Loading…
FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing
This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge o...
Saved in:
Published in: | SAE transactions 2000-01, Vol.109, p.529-535 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 535 |
container_issue | |
container_start_page | 529 |
container_title | SAE transactions |
container_volume | 109 |
creator | Xu, Kai Zhu, Meilin Fan, Zhun Gao, Jia |
description | This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44634239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44634239</jstor_id><sourcerecordid>44634239</sourcerecordid><originalsourceid>FETCH-jstor_primary_446342393</originalsourceid><addsrcrecordid>eNpjYuA0MjU31zU0NTZkYeA0MLA00zU3NovgYOAqLs4yMDA2NDU34mRwdPN1dVTIT1MIKS1Kyk_OSCxKT01RcMlMLU7NUXDNS8_MS1UIriwuSc1VCC3OzEtXcCutqqpU8MxLSy1KzUsGivAwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzNjEyNjS2NC8gBKnTXB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</title><source>JSTOR</source><creator>Xu, Kai ; Zhu, Meilin ; Fan, Zhun ; Gao, Jia</creator><creatorcontrib>Xu, Kai ; Zhu, Meilin ; Fan, Zhun ; Gao, Jia</creatorcontrib><description>This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method.</description><identifier>ISSN: 0096-736X</identifier><identifier>EISSN: 2577-1531</identifier><language>eng</language><publisher>Society of Automotive Engineers, Inc</publisher><subject>Air compressors ; Diesel engines ; Failure modes ; Fuzzy sets ; Linguistics ; Membership functions ; Reliability engineering ; Superchargers ; Turbines ; Wheels</subject><ispartof>SAE transactions, 2000-01, Vol.109, p.529-535</ispartof><rights>Copyright 2001 Society of Automotive Engineers, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44634239$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44634239$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58212,58445</link.rule.ids></links><search><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Zhu, Meilin</creatorcontrib><creatorcontrib>Fan, Zhun</creatorcontrib><creatorcontrib>Gao, Jia</creatorcontrib><title>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</title><title>SAE transactions</title><description>This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method.</description><subject>Air compressors</subject><subject>Diesel engines</subject><subject>Failure modes</subject><subject>Fuzzy sets</subject><subject>Linguistics</subject><subject>Membership functions</subject><subject>Reliability engineering</subject><subject>Superchargers</subject><subject>Turbines</subject><subject>Wheels</subject><issn>0096-736X</issn><issn>2577-1531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0MjU31zU0NTZkYeA0MLA00zU3NovgYOAqLs4yMDA2NDU34mRwdPN1dVTIT1MIKS1Kyk_OSCxKT01RcMlMLU7NUXDNS8_MS1UIriwuSc1VCC3OzEtXcCutqqpU8MxLSy1KzUsGivAwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzNjEyNjS2NC8gBKnTXB</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Xu, Kai</creator><creator>Zhu, Meilin</creator><creator>Fan, Zhun</creator><creator>Gao, Jia</creator><general>Society of Automotive Engineers, Inc</general><scope/></search><sort><creationdate>20000101</creationdate><title>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</title><author>Xu, Kai ; Zhu, Meilin ; Fan, Zhun ; Gao, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_446342393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Air compressors</topic><topic>Diesel engines</topic><topic>Failure modes</topic><topic>Fuzzy sets</topic><topic>Linguistics</topic><topic>Membership functions</topic><topic>Reliability engineering</topic><topic>Superchargers</topic><topic>Turbines</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Zhu, Meilin</creatorcontrib><creatorcontrib>Fan, Zhun</creatorcontrib><creatorcontrib>Gao, Jia</creatorcontrib><jtitle>SAE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kai</au><au>Zhu, Meilin</au><au>Fan, Zhun</au><au>Gao, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</atitle><jtitle>SAE transactions</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>109</volume><spage>529</spage><epage>535</epage><pages>529-535</pages><issn>0096-736X</issn><eissn>2577-1531</eissn><abstract>This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method.</abstract><pub>Society of Automotive Engineers, Inc</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-736X |
ispartof | SAE transactions, 2000-01, Vol.109, p.529-535 |
issn | 0096-736X 2577-1531 |
language | eng |
recordid | cdi_jstor_primary_44634239 |
source | JSTOR |
subjects | Air compressors Diesel engines Failure modes Fuzzy sets Linguistics Membership functions Reliability engineering Superchargers Turbines Wheels |
title | FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T18%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMEA%20of%20Turbocharged%20Diesel%20Engine%20System%20Using%20Fuzzy%20Inferencing&rft.jtitle=SAE%20transactions&rft.au=Xu,%20Kai&rft.date=2000-01-01&rft.volume=109&rft.spage=529&rft.epage=535&rft.pages=529-535&rft.issn=0096-736X&rft.eissn=2577-1531&rft_id=info:doi/&rft_dat=%3Cjstor%3E44634239%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_446342393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44634239&rfr_iscdi=true |