Loading…

FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing

This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge o...

Full description

Saved in:
Bibliographic Details
Published in:SAE transactions 2000-01, Vol.109, p.529-535
Main Authors: Xu, Kai, Zhu, Meilin, Fan, Zhun, Gao, Jia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 535
container_issue
container_start_page 529
container_title SAE transactions
container_volume 109
creator Xu, Kai
Zhu, Meilin
Fan, Zhun
Gao, Jia
description This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44634239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44634239</jstor_id><sourcerecordid>44634239</sourcerecordid><originalsourceid>FETCH-jstor_primary_446342393</originalsourceid><addsrcrecordid>eNpjYuA0MjU31zU0NTZkYeA0MLA00zU3NovgYOAqLs4yMDA2NDU34mRwdPN1dVTIT1MIKS1Kyk_OSCxKT01RcMlMLU7NUXDNS8_MS1UIriwuSc1VCC3OzEtXcCutqqpU8MxLSy1KzUsGivAwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzNjEyNjS2NC8gBKnTXB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</title><source>JSTOR</source><creator>Xu, Kai ; Zhu, Meilin ; Fan, Zhun ; Gao, Jia</creator><creatorcontrib>Xu, Kai ; Zhu, Meilin ; Fan, Zhun ; Gao, Jia</creatorcontrib><description>This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method.</description><identifier>ISSN: 0096-736X</identifier><identifier>EISSN: 2577-1531</identifier><language>eng</language><publisher>Society of Automotive Engineers, Inc</publisher><subject>Air compressors ; Diesel engines ; Failure modes ; Fuzzy sets ; Linguistics ; Membership functions ; Reliability engineering ; Superchargers ; Turbines ; Wheels</subject><ispartof>SAE transactions, 2000-01, Vol.109, p.529-535</ispartof><rights>Copyright 2001 Society of Automotive Engineers, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44634239$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44634239$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58212,58445</link.rule.ids></links><search><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Zhu, Meilin</creatorcontrib><creatorcontrib>Fan, Zhun</creatorcontrib><creatorcontrib>Gao, Jia</creatorcontrib><title>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</title><title>SAE transactions</title><description>This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method.</description><subject>Air compressors</subject><subject>Diesel engines</subject><subject>Failure modes</subject><subject>Fuzzy sets</subject><subject>Linguistics</subject><subject>Membership functions</subject><subject>Reliability engineering</subject><subject>Superchargers</subject><subject>Turbines</subject><subject>Wheels</subject><issn>0096-736X</issn><issn>2577-1531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0MjU31zU0NTZkYeA0MLA00zU3NovgYOAqLs4yMDA2NDU34mRwdPN1dVTIT1MIKS1Kyk_OSCxKT01RcMlMLU7NUXDNS8_MS1UIriwuSc1VCC3OzEtXcCutqqpU8MxLSy1KzUsGivAwsKYl5hSn8kJpbgZZN9cQZw_drOKS_KL4gqLM3MSiyngTEzNjEyNjS2NC8gBKnTXB</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Xu, Kai</creator><creator>Zhu, Meilin</creator><creator>Fan, Zhun</creator><creator>Gao, Jia</creator><general>Society of Automotive Engineers, Inc</general><scope/></search><sort><creationdate>20000101</creationdate><title>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</title><author>Xu, Kai ; Zhu, Meilin ; Fan, Zhun ; Gao, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_446342393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Air compressors</topic><topic>Diesel engines</topic><topic>Failure modes</topic><topic>Fuzzy sets</topic><topic>Linguistics</topic><topic>Membership functions</topic><topic>Reliability engineering</topic><topic>Superchargers</topic><topic>Turbines</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Zhu, Meilin</creatorcontrib><creatorcontrib>Fan, Zhun</creatorcontrib><creatorcontrib>Gao, Jia</creatorcontrib><jtitle>SAE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Kai</au><au>Zhu, Meilin</au><au>Fan, Zhun</au><au>Gao, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing</atitle><jtitle>SAE transactions</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>109</volume><spage>529</spage><epage>535</epage><pages>529-535</pages><issn>0096-736X</issn><eissn>2577-1531</eissn><abstract>This paper presents a novel method of the FMEA of the turbocharged diesel engine system using fuzzy inferencing. It uses a membership function to represent information of FMEA (e. g. failure mode and failure effect) that is described by linguistic variables to the defined categories. The knowledge of experts is expressed in terms of if-then rules. Min-max inferencing is used to evaluate fuzzy model, and the Center of Area (centroid) method of defuzzification is adopted to obtain crisp results. A fuzzy-logic-based FMEA Two-stage Inferencing Model is developed. A prototype system based on the model has been constructed and used to conduct the FMEA of the turbocharger rotor-bearing subsystem. The results have shown the practicality of the method.</abstract><pub>Society of Automotive Engineers, Inc</pub></addata></record>
fulltext fulltext
identifier ISSN: 0096-736X
ispartof SAE transactions, 2000-01, Vol.109, p.529-535
issn 0096-736X
2577-1531
language eng
recordid cdi_jstor_primary_44634239
source JSTOR
subjects Air compressors
Diesel engines
Failure modes
Fuzzy sets
Linguistics
Membership functions
Reliability engineering
Superchargers
Turbines
Wheels
title FMEA of Turbocharged Diesel Engine System Using Fuzzy Inferencing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T18%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMEA%20of%20Turbocharged%20Diesel%20Engine%20System%20Using%20Fuzzy%20Inferencing&rft.jtitle=SAE%20transactions&rft.au=Xu,%20Kai&rft.date=2000-01-01&rft.volume=109&rft.spage=529&rft.epage=535&rft.pages=529-535&rft.issn=0096-736X&rft.eissn=2577-1531&rft_id=info:doi/&rft_dat=%3Cjstor%3E44634239%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_446342393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44634239&rfr_iscdi=true