Loading…

A note on the self-similar solutions to the spontaneous fragmentation equation

We provide a method to compute self-similar solutions for various fragmentation equations and use it to compute their asymptotic behaviours. Our procedure is applied to specific cases: (i) the case of mitosis, where fragmentation results into two identical fragments, (ii) fragmentation limited to th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-13
Main Authors: Breschi, Giancarlo, Fontelos, Marco A.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13
container_issue 2201
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 473
creator Breschi, Giancarlo
Fontelos, Marco A.
description We provide a method to compute self-similar solutions for various fragmentation equations and use it to compute their asymptotic behaviours. Our procedure is applied to specific cases: (i) the case of mitosis, where fragmentation results into two identical fragments, (ii) fragmentation limited to the formation of sufficiently large fragments, and (iii) processes with fragmentation kernel presenting a power-like behaviour.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_44683222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44683222</jstor_id><sourcerecordid>44683222</sourcerecordid><originalsourceid>FETCH-jstor_primary_446832223</originalsourceid><addsrcrecordid>eNqFijsOwjAQBV2ARPgcAWkvYMlxnBBKhEBUVPSRiw04crzB6xTcnm9P9WY0byKyvKiMLJXOZ2LO3CmltmW9ycR5B4ESAgVINwRG30p2vfM2ApMfk6PAkOhbBwrJBqSRoY322uNL3w_A-_iBpZi21jOufrsQ6-Phsj_JjhPFZoiut_HRGFPVhda6-Nefpn45_w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A note on the self-similar solutions to the spontaneous fragmentation equation</title><source>JSTOR Archival Journals</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Breschi, Giancarlo ; Fontelos, Marco A.</creator><creatorcontrib>Breschi, Giancarlo ; Fontelos, Marco A.</creatorcontrib><description>We provide a method to compute self-similar solutions for various fragmentation equations and use it to compute their asymptotic behaviours. Our procedure is applied to specific cases: (i) the case of mitosis, where fragmentation results into two identical fragments, (ii) fragmentation limited to the formation of sufficiently large fragments, and (iii) processes with fragmentation kernel presenting a power-like behaviour.</description><identifier>ISSN: 1364-5021</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-13</ispartof><rights>The Royal Society, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44683222$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44683222$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58217,58450</link.rule.ids></links><search><creatorcontrib>Breschi, Giancarlo</creatorcontrib><creatorcontrib>Fontelos, Marco A.</creatorcontrib><title>A note on the self-similar solutions to the spontaneous fragmentation equation</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>We provide a method to compute self-similar solutions for various fragmentation equations and use it to compute their asymptotic behaviours. Our procedure is applied to specific cases: (i) the case of mitosis, where fragmentation results into two identical fragments, (ii) fragmentation limited to the formation of sufficiently large fragments, and (iii) processes with fragmentation kernel presenting a power-like behaviour.</description><issn>1364-5021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFijsOwjAQBV2ARPgcAWkvYMlxnBBKhEBUVPSRiw04crzB6xTcnm9P9WY0byKyvKiMLJXOZ2LO3CmltmW9ycR5B4ESAgVINwRG30p2vfM2ApMfk6PAkOhbBwrJBqSRoY322uNL3w_A-_iBpZi21jOufrsQ6-Phsj_JjhPFZoiut_HRGFPVhda6-Nefpn45_w</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Breschi, Giancarlo</creator><creator>Fontelos, Marco A.</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20170501</creationdate><title>A note on the self-similar solutions to the spontaneous fragmentation equation</title><author>Breschi, Giancarlo ; Fontelos, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_446832223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breschi, Giancarlo</creatorcontrib><creatorcontrib>Fontelos, Marco A.</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breschi, Giancarlo</au><au>Fontelos, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on the self-similar solutions to the spontaneous fragmentation equation</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>473</volume><issue>2201</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1364-5021</issn><abstract>We provide a method to compute self-similar solutions for various fragmentation equations and use it to compute their asymptotic behaviours. Our procedure is applied to specific cases: (i) the case of mitosis, where fragmentation results into two identical fragments, (ii) fragmentation limited to the formation of sufficiently large fragments, and (iii) processes with fragmentation kernel presenting a power-like behaviour.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2017-05, Vol.473 (2201), p.1-13
issn 1364-5021
language eng
recordid cdi_jstor_primary_44683222
source JSTOR Archival Journals; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
title A note on the self-similar solutions to the spontaneous fragmentation equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20the%20self-similar%20solutions%20to%20the%20spontaneous%20fragmentation%20equation&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Breschi,%20Giancarlo&rft.date=2017-05-01&rft.volume=473&rft.issue=2201&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1364-5021&rft_id=info:doi/&rft_dat=%3Cjstor%3E44683222%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_446832223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44683222&rfr_iscdi=true