Loading…

Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations

Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of ecology, evolution, and systematics evolution, and systematics, 2017-11, Vol.48 (1), p.559-584
Main Authors: Dormann, Carsten F, Fründ, Jochen, Schaefer, H. Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3
cites cdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3
container_end_page 584
container_issue 1
container_start_page 559
container_title Annual review of ecology, evolution, and systematics
container_volume 48
creator Dormann, Carsten F
Fründ, Jochen
Schaefer, H. Martin
description Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.
doi_str_mv 10.1146/annurev-ecolsys-110316-022928
format article
fullrecord <record><control><sourceid>jstor_ZYWBE</sourceid><recordid>TN_cdi_jstor_primary_44864293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44864293</jstor_id><sourcerecordid>44864293</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</originalsourceid><addsrcrecordid>eNqVkE1LwzAYx4soOKcfQSiIx2re2iaCBx1TB8N5mOAtpG0yMrukJqlj397MDu-engf-b_BLkmsIbiAkxa0wpnfyO5O1bf3OZxACDIsMIMQQPUpGMCd5hkDBjn9_nOUMfZwmZ96vQTQRCkfJctZIE7TaabNKJ6L30qdWpW8iBOmMT7VJp7HernQt2vRVhq11n_4uXXSddaE3OuiYEKZJ53qjgwjaGn-enCjRenlxuOPk_Wm6nLxk88XzbPIwzwQhJGSyAYjWVSlVoWDBUEkRxkSWOc4VxgAx0KgCNFVdkYJUJWB7rS4bRQmmjDR4nFwNvZ2zX730ga9t70yc5JBRCjADeRld94OrdtZ7JxXvnN4It-MQ8D1IfgDJDyD5AJIPIGP-csivfbDuL0wILQhiOOqPg76vEW0s0nLr_znyA_fxjUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988039057</pqid></control><display><type>article</type><title>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</title><source>Annual Reviews Open Access</source><creator>Dormann, Carsten F ; Fründ, Jochen ; Schaefer, H. Martin</creator><creatorcontrib>Dormann, Carsten F ; Fründ, Jochen ; Schaefer, H. Martin</creatorcontrib><description>Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.</description><identifier>ISSN: 1543-592X</identifier><identifier>EISSN: 1545-2069</identifier><identifier>DOI: 10.1146/annurev-ecolsys-110316-022928</identifier><language>eng</language><publisher>Palo Alto: Annual Reviews</publisher><subject>coevolution ; Ecological effects ; Ecology ; Fitness ; interaction network ; Modularity ; null model ; pollination network ; Reproductive fitness ; Sampling ; Sampling designs ; sampling effect ; Specialization</subject><ispartof>Annual review of ecology, evolution, and systematics, 2017-11, Vol.48 (1), p.559-584</ispartof><rights>Copyright © 2017 by Annual Reviews. All rights reserved 2017</rights><rights>COPYRIGHT © 2017 ANNUAL REVIEWS</rights><rights>Copyright Annual Reviews, Inc. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</citedby><cites>FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-ecolsys-110316-022928?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-ecolsys-110316-022928$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>314,780,784,27892,27924,27925,58238,58471,78274,78360,78379,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-ecolsys-110316-022928$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc></links><search><creatorcontrib>Dormann, Carsten F</creatorcontrib><creatorcontrib>Fründ, Jochen</creatorcontrib><creatorcontrib>Schaefer, H. Martin</creatorcontrib><title>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</title><title>Annual review of ecology, evolution, and systematics</title><description>Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.</description><subject>coevolution</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Fitness</subject><subject>interaction network</subject><subject>Modularity</subject><subject>null model</subject><subject>pollination network</subject><subject>Reproductive fitness</subject><subject>Sampling</subject><subject>Sampling designs</subject><subject>sampling effect</subject><subject>Specialization</subject><issn>1543-592X</issn><issn>1545-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVkE1LwzAYx4soOKcfQSiIx2re2iaCBx1TB8N5mOAtpG0yMrukJqlj397MDu-engf-b_BLkmsIbiAkxa0wpnfyO5O1bf3OZxACDIsMIMQQPUpGMCd5hkDBjn9_nOUMfZwmZ96vQTQRCkfJctZIE7TaabNKJ6L30qdWpW8iBOmMT7VJp7HernQt2vRVhq11n_4uXXSddaE3OuiYEKZJ53qjgwjaGn-enCjRenlxuOPk_Wm6nLxk88XzbPIwzwQhJGSyAYjWVSlVoWDBUEkRxkSWOc4VxgAx0KgCNFVdkYJUJWB7rS4bRQmmjDR4nFwNvZ2zX730ga9t70yc5JBRCjADeRld94OrdtZ7JxXvnN4It-MQ8D1IfgDJDyD5AJIPIGP-csivfbDuL0wILQhiOOqPg76vEW0s0nLr_znyA_fxjUo</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Dormann, Carsten F</creator><creator>Fründ, Jochen</creator><creator>Schaefer, H. Martin</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171102</creationdate><title>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</title><author>Dormann, Carsten F ; Fründ, Jochen ; Schaefer, H. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>coevolution</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Fitness</topic><topic>interaction network</topic><topic>Modularity</topic><topic>null model</topic><topic>pollination network</topic><topic>Reproductive fitness</topic><topic>Sampling</topic><topic>Sampling designs</topic><topic>sampling effect</topic><topic>Specialization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dormann, Carsten F</creatorcontrib><creatorcontrib>Fründ, Jochen</creatorcontrib><creatorcontrib>Schaefer, H. Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Annual review of ecology, evolution, and systematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dormann, Carsten F</au><au>Fründ, Jochen</au><au>Schaefer, H. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</atitle><jtitle>Annual review of ecology, evolution, and systematics</jtitle><date>2017-11-02</date><risdate>2017</risdate><volume>48</volume><issue>1</issue><spage>559</spage><epage>584</epage><pages>559-584</pages><issn>1543-592X</issn><eissn>1545-2069</eissn><abstract>Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.</abstract><cop>Palo Alto</cop><pub>Annual Reviews</pub><doi>10.1146/annurev-ecolsys-110316-022928</doi><tpages>26</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1543-592X
ispartof Annual review of ecology, evolution, and systematics, 2017-11, Vol.48 (1), p.559-584
issn 1543-592X
1545-2069
language eng
recordid cdi_jstor_primary_44864293
source Annual Reviews Open Access
subjects coevolution
Ecological effects
Ecology
Fitness
interaction network
Modularity
null model
pollination network
Reproductive fitness
Sampling
Sampling designs
sampling effect
Specialization
title Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Causes%20of%20Patterns%20in%20Ecological%20Networks:%20Opportunities%20and%20Limitations&rft.jtitle=Annual%20review%20of%20ecology,%20evolution,%20and%20systematics&rft.au=Dormann,%20Carsten%20F&rft.date=2017-11-02&rft.volume=48&rft.issue=1&rft.spage=559&rft.epage=584&rft.pages=559-584&rft.issn=1543-592X&rft.eissn=1545-2069&rft_id=info:doi/10.1146/annurev-ecolsys-110316-022928&rft_dat=%3Cjstor_ZYWBE%3E44864293%3C/jstor_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1988039057&rft_id=info:pmid/&rft_jstor_id=44864293&rfr_iscdi=true