Loading…
Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations
Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary...
Saved in:
Published in: | Annual review of ecology, evolution, and systematics evolution, and systematics, 2017-11, Vol.48 (1), p.559-584 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3 |
container_end_page | 584 |
container_issue | 1 |
container_start_page | 559 |
container_title | Annual review of ecology, evolution, and systematics |
container_volume | 48 |
creator | Dormann, Carsten F Fründ, Jochen Schaefer, H. Martin |
description | Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups. |
doi_str_mv | 10.1146/annurev-ecolsys-110316-022928 |
format | article |
fullrecord | <record><control><sourceid>jstor_ZYWBE</sourceid><recordid>TN_cdi_jstor_primary_44864293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44864293</jstor_id><sourcerecordid>44864293</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</originalsourceid><addsrcrecordid>eNqVkE1LwzAYx4soOKcfQSiIx2re2iaCBx1TB8N5mOAtpG0yMrukJqlj397MDu-engf-b_BLkmsIbiAkxa0wpnfyO5O1bf3OZxACDIsMIMQQPUpGMCd5hkDBjn9_nOUMfZwmZ96vQTQRCkfJctZIE7TaabNKJ6L30qdWpW8iBOmMT7VJp7HernQt2vRVhq11n_4uXXSddaE3OuiYEKZJ53qjgwjaGn-enCjRenlxuOPk_Wm6nLxk88XzbPIwzwQhJGSyAYjWVSlVoWDBUEkRxkSWOc4VxgAx0KgCNFVdkYJUJWB7rS4bRQmmjDR4nFwNvZ2zX730ga9t70yc5JBRCjADeRld94OrdtZ7JxXvnN4It-MQ8D1IfgDJDyD5AJIPIGP-csivfbDuL0wILQhiOOqPg76vEW0s0nLr_znyA_fxjUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988039057</pqid></control><display><type>article</type><title>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</title><source>Annual Reviews Open Access</source><creator>Dormann, Carsten F ; Fründ, Jochen ; Schaefer, H. Martin</creator><creatorcontrib>Dormann, Carsten F ; Fründ, Jochen ; Schaefer, H. Martin</creatorcontrib><description>Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.</description><identifier>ISSN: 1543-592X</identifier><identifier>EISSN: 1545-2069</identifier><identifier>DOI: 10.1146/annurev-ecolsys-110316-022928</identifier><language>eng</language><publisher>Palo Alto: Annual Reviews</publisher><subject>coevolution ; Ecological effects ; Ecology ; Fitness ; interaction network ; Modularity ; null model ; pollination network ; Reproductive fitness ; Sampling ; Sampling designs ; sampling effect ; Specialization</subject><ispartof>Annual review of ecology, evolution, and systematics, 2017-11, Vol.48 (1), p.559-584</ispartof><rights>Copyright © 2017 by Annual Reviews. All rights reserved 2017</rights><rights>COPYRIGHT © 2017 ANNUAL REVIEWS</rights><rights>Copyright Annual Reviews, Inc. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</citedby><cites>FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-ecolsys-110316-022928?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-ecolsys-110316-022928$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>314,780,784,27892,27924,27925,58238,58471,78274,78360,78379,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-ecolsys-110316-022928$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc></links><search><creatorcontrib>Dormann, Carsten F</creatorcontrib><creatorcontrib>Fründ, Jochen</creatorcontrib><creatorcontrib>Schaefer, H. Martin</creatorcontrib><title>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</title><title>Annual review of ecology, evolution, and systematics</title><description>Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.</description><subject>coevolution</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Fitness</subject><subject>interaction network</subject><subject>Modularity</subject><subject>null model</subject><subject>pollination network</subject><subject>Reproductive fitness</subject><subject>Sampling</subject><subject>Sampling designs</subject><subject>sampling effect</subject><subject>Specialization</subject><issn>1543-592X</issn><issn>1545-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVkE1LwzAYx4soOKcfQSiIx2re2iaCBx1TB8N5mOAtpG0yMrukJqlj397MDu-engf-b_BLkmsIbiAkxa0wpnfyO5O1bf3OZxACDIsMIMQQPUpGMCd5hkDBjn9_nOUMfZwmZ96vQTQRCkfJctZIE7TaabNKJ6L30qdWpW8iBOmMT7VJp7HernQt2vRVhq11n_4uXXSddaE3OuiYEKZJ53qjgwjaGn-enCjRenlxuOPk_Wm6nLxk88XzbPIwzwQhJGSyAYjWVSlVoWDBUEkRxkSWOc4VxgAx0KgCNFVdkYJUJWB7rS4bRQmmjDR4nFwNvZ2zX730ga9t70yc5JBRCjADeRld94OrdtZ7JxXvnN4It-MQ8D1IfgDJDyD5AJIPIGP-csivfbDuL0wILQhiOOqPg76vEW0s0nLr_znyA_fxjUo</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Dormann, Carsten F</creator><creator>Fründ, Jochen</creator><creator>Schaefer, H. Martin</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171102</creationdate><title>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</title><author>Dormann, Carsten F ; Fründ, Jochen ; Schaefer, H. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>coevolution</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Fitness</topic><topic>interaction network</topic><topic>Modularity</topic><topic>null model</topic><topic>pollination network</topic><topic>Reproductive fitness</topic><topic>Sampling</topic><topic>Sampling designs</topic><topic>sampling effect</topic><topic>Specialization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dormann, Carsten F</creatorcontrib><creatorcontrib>Fründ, Jochen</creatorcontrib><creatorcontrib>Schaefer, H. Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Annual review of ecology, evolution, and systematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dormann, Carsten F</au><au>Fründ, Jochen</au><au>Schaefer, H. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations</atitle><jtitle>Annual review of ecology, evolution, and systematics</jtitle><date>2017-11-02</date><risdate>2017</risdate><volume>48</volume><issue>1</issue><spage>559</spage><epage>584</epage><pages>559-584</pages><issn>1543-592X</issn><eissn>1545-2069</eissn><abstract>Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.</abstract><cop>Palo Alto</cop><pub>Annual Reviews</pub><doi>10.1146/annurev-ecolsys-110316-022928</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1543-592X |
ispartof | Annual review of ecology, evolution, and systematics, 2017-11, Vol.48 (1), p.559-584 |
issn | 1543-592X 1545-2069 |
language | eng |
recordid | cdi_jstor_primary_44864293 |
source | Annual Reviews Open Access |
subjects | coevolution Ecological effects Ecology Fitness interaction network Modularity null model pollination network Reproductive fitness Sampling Sampling designs sampling effect Specialization |
title | Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Causes%20of%20Patterns%20in%20Ecological%20Networks:%20Opportunities%20and%20Limitations&rft.jtitle=Annual%20review%20of%20ecology,%20evolution,%20and%20systematics&rft.au=Dormann,%20Carsten%20F&rft.date=2017-11-02&rft.volume=48&rft.issue=1&rft.spage=559&rft.epage=584&rft.pages=559-584&rft.issn=1543-592X&rft.eissn=1545-2069&rft_id=info:doi/10.1146/annurev-ecolsys-110316-022928&rft_dat=%3Cjstor_ZYWBE%3E44864293%3C/jstor_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-ed028cb7ef6f1692782334e7535f330290df60dbcb464b7094e75c7df843894d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1988039057&rft_id=info:pmid/&rft_jstor_id=44864293&rfr_iscdi=true |