Loading…

On Modeling and Estimation for the Relative Risk and Risk Difference

A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 2017-07, Vol.112 (519), p.1121-1130
Main Authors: Richardson, Thomas S., Robins, James M., Wang, Linbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253
cites cdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253
container_end_page 1130
container_issue 519
container_start_page 1121
container_title Journal of the American Statistical Association
container_volume 112
creator Richardson, Thomas S.
Robins, James M.
Wang, Linbo
description A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2016.1192546
format article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_45027963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45027963</jstor_id><sourcerecordid>45027963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMInVMoPpHiJl9xAbSlIRZVQD9wsxwu4pA6yI1D_HqctHJnLPM28N8sDYILgFEEBbyFiGFW0nuKMpgjVmFbsDIwQJbzEvHo9B6OBUw6kS3CV0hbm4EKMwHwdiufO2NaHt0IFUyxS73eq910oXBeL_t0WL7bNha8MfPo4kA5g7p2z0QZtr8GFU22yN6c8BpuHxWb2WK7Wy6fZ_arUFcJ9KXitkEE1VIIiQihqsONQOw0NM4IqwWhtnG0azpwxRKs6cyGuXMOIwJSMAT2O1bFLKVonP2O-Ne4lgnJwQv46IQcn5MmJrJscddvUd_FPVFGIec1I7t8d-z7kl3fqu4utkb3at110UQXtkyT_r_gB53Rt3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Modeling and Estimation for the Relative Risk and Risk Difference</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Richardson, Thomas S. ; Robins, James M. ; Wang, Linbo</creator><creatorcontrib>Richardson, Thomas S. ; Robins, James M. ; Wang, Linbo</creatorcontrib><description>A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2016.1192546</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Bivariate mapping ; Estimating equation ; Semiparametric model ; Theory and Methods ; Variation independence</subject><ispartof>Journal of the American Statistical Association, 2017-07, Vol.112 (519), p.1121-1130</ispartof><rights>2017 American Statistical Association 2017</rights><rights>Copyright © 2017 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</citedby><cites>FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45027963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45027963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Richardson, Thomas S.</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><creatorcontrib>Wang, Linbo</creatorcontrib><title>On Modeling and Estimation for the Relative Risk and Risk Difference</title><title>Journal of the American Statistical Association</title><description>A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.</description><subject>Bivariate mapping</subject><subject>Estimating equation</subject><subject>Semiparametric model</subject><subject>Theory and Methods</subject><subject>Variation independence</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMInVMoPpHiJl9xAbSlIRZVQD9wsxwu4pA6yI1D_HqctHJnLPM28N8sDYILgFEEBbyFiGFW0nuKMpgjVmFbsDIwQJbzEvHo9B6OBUw6kS3CV0hbm4EKMwHwdiufO2NaHt0IFUyxS73eq910oXBeL_t0WL7bNha8MfPo4kA5g7p2z0QZtr8GFU22yN6c8BpuHxWb2WK7Wy6fZ_arUFcJ9KXitkEE1VIIiQihqsONQOw0NM4IqwWhtnG0azpwxRKs6cyGuXMOIwJSMAT2O1bFLKVonP2O-Ne4lgnJwQv46IQcn5MmJrJscddvUd_FPVFGIec1I7t8d-z7kl3fqu4utkb3at110UQXtkyT_r_gB53Rt3A</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Richardson, Thomas S.</creator><creator>Robins, James M.</creator><creator>Wang, Linbo</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group,LLC</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170703</creationdate><title>On Modeling and Estimation for the Relative Risk and Risk Difference</title><author>Richardson, Thomas S. ; Robins, James M. ; Wang, Linbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bivariate mapping</topic><topic>Estimating equation</topic><topic>Semiparametric model</topic><topic>Theory and Methods</topic><topic>Variation independence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Thomas S.</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><creatorcontrib>Wang, Linbo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Thomas S.</au><au>Robins, James M.</au><au>Wang, Linbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Modeling and Estimation for the Relative Risk and Risk Difference</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>112</volume><issue>519</issue><spage>1121</spage><epage>1130</epage><pages>1121-1130</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2016.1192546</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2017-07, Vol.112 (519), p.1121-1130
issn 0162-1459
1537-274X
language eng
recordid cdi_jstor_primary_45027963
source JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection
subjects Bivariate mapping
Estimating equation
Semiparametric model
Theory and Methods
Variation independence
title On Modeling and Estimation for the Relative Risk and Risk Difference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Modeling%20and%20Estimation%20for%20the%20Relative%20Risk%20and%20Risk%20Difference&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Richardson,%20Thomas%20S.&rft.date=2017-07-03&rft.volume=112&rft.issue=519&rft.spage=1121&rft.epage=1130&rft.pages=1121-1130&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2016.1192546&rft_dat=%3Cjstor_infor%3E45027963%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45027963&rfr_iscdi=true