Loading…
On Modeling and Estimation for the Relative Risk and Risk Difference
A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuis...
Saved in:
Published in: | Journal of the American Statistical Association 2017-07, Vol.112 (519), p.1121-1130 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253 |
container_end_page | 1130 |
container_issue | 519 |
container_start_page | 1121 |
container_title | Journal of the American Statistical Association |
container_volume | 112 |
creator | Richardson, Thomas S. Robins, James M. Wang, Linbo |
description | A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package
implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online. |
doi_str_mv | 10.1080/01621459.2016.1192546 |
format | article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_45027963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45027963</jstor_id><sourcerecordid>45027963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMInVMoPpHiJl9xAbSlIRZVQD9wsxwu4pA6yI1D_HqctHJnLPM28N8sDYILgFEEBbyFiGFW0nuKMpgjVmFbsDIwQJbzEvHo9B6OBUw6kS3CV0hbm4EKMwHwdiufO2NaHt0IFUyxS73eq910oXBeL_t0WL7bNha8MfPo4kA5g7p2z0QZtr8GFU22yN6c8BpuHxWb2WK7Wy6fZ_arUFcJ9KXitkEE1VIIiQihqsONQOw0NM4IqwWhtnG0azpwxRKs6cyGuXMOIwJSMAT2O1bFLKVonP2O-Ne4lgnJwQv46IQcn5MmJrJscddvUd_FPVFGIec1I7t8d-z7kl3fqu4utkb3at110UQXtkyT_r_gB53Rt3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Modeling and Estimation for the Relative Risk and Risk Difference</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Richardson, Thomas S. ; Robins, James M. ; Wang, Linbo</creator><creatorcontrib>Richardson, Thomas S. ; Robins, James M. ; Wang, Linbo</creatorcontrib><description>A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package
implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2016.1192546</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Bivariate mapping ; Estimating equation ; Semiparametric model ; Theory and Methods ; Variation independence</subject><ispartof>Journal of the American Statistical Association, 2017-07, Vol.112 (519), p.1121-1130</ispartof><rights>2017 American Statistical Association 2017</rights><rights>Copyright © 2017 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</citedby><cites>FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45027963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45027963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Richardson, Thomas S.</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><creatorcontrib>Wang, Linbo</creatorcontrib><title>On Modeling and Estimation for the Relative Risk and Risk Difference</title><title>Journal of the American Statistical Association</title><description>A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package
implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.</description><subject>Bivariate mapping</subject><subject>Estimating equation</subject><subject>Semiparametric model</subject><subject>Theory and Methods</subject><subject>Variation independence</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMInVMoPpHiJl9xAbSlIRZVQD9wsxwu4pA6yI1D_HqctHJnLPM28N8sDYILgFEEBbyFiGFW0nuKMpgjVmFbsDIwQJbzEvHo9B6OBUw6kS3CV0hbm4EKMwHwdiufO2NaHt0IFUyxS73eq910oXBeL_t0WL7bNha8MfPo4kA5g7p2z0QZtr8GFU22yN6c8BpuHxWb2WK7Wy6fZ_arUFcJ9KXitkEE1VIIiQihqsONQOw0NM4IqwWhtnG0azpwxRKs6cyGuXMOIwJSMAT2O1bFLKVonP2O-Ne4lgnJwQv46IQcn5MmJrJscddvUd_FPVFGIec1I7t8d-z7kl3fqu4utkb3at110UQXtkyT_r_gB53Rt3A</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Richardson, Thomas S.</creator><creator>Robins, James M.</creator><creator>Wang, Linbo</creator><general>Taylor & Francis</general><general>Taylor & Francis Group,LLC</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170703</creationdate><title>On Modeling and Estimation for the Relative Risk and Risk Difference</title><author>Richardson, Thomas S. ; Robins, James M. ; Wang, Linbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bivariate mapping</topic><topic>Estimating equation</topic><topic>Semiparametric model</topic><topic>Theory and Methods</topic><topic>Variation independence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Thomas S.</creatorcontrib><creatorcontrib>Robins, James M.</creatorcontrib><creatorcontrib>Wang, Linbo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Thomas S.</au><au>Robins, James M.</au><au>Wang, Linbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Modeling and Estimation for the Relative Risk and Risk Difference</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>112</volume><issue>519</issue><spage>1121</spage><epage>1130</epage><pages>1121-1130</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package
implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.</abstract><pub>Taylor & Francis</pub><doi>10.1080/01621459.2016.1192546</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2017-07, Vol.112 (519), p.1121-1130 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_jstor_primary_45027963 |
source | JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Bivariate mapping Estimating equation Semiparametric model Theory and Methods Variation independence |
title | On Modeling and Estimation for the Relative Risk and Risk Difference |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Modeling%20and%20Estimation%20for%20the%20Relative%20Risk%20and%20Risk%20Difference&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Richardson,%20Thomas%20S.&rft.date=2017-07-03&rft.volume=112&rft.issue=519&rft.spage=1121&rft.epage=1130&rft.pages=1121-1130&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2016.1192546&rft_dat=%3Cjstor_infor%3E45027963%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-879a1d190a8513351b2f70cfc0d6d85a8659dfebb76fdd3ca9190024fb638253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45027963&rfr_iscdi=true |