Loading…
A "Paradox" in Confidence Interval Construction Using Sufficient Statistics
Statistical inference about parameters should depend on raw data only through sufficient statistics-the well known sufficiency principle. In particular, inference should depend on minimal sufficient statistics if these are simpler than the raw data. In this article, we construct one-sided confidence...
Saved in:
Published in: | The American statistician 2018-10, Vol.72 (4), p.315-320 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-1d831d7a1dcc01990f7b1a56bbbfee0b1d1e4feb21213671a90c0b0e17bba1dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-1d831d7a1dcc01990f7b1a56bbbfee0b1d1e4feb21213671a90c0b0e17bba1dc3 |
container_end_page | 320 |
container_issue | 4 |
container_start_page | 315 |
container_title | The American statistician |
container_volume | 72 |
creator | Wang, Weizhen |
description | Statistical inference about parameters should depend on raw data only through sufficient statistics-the well known sufficiency principle. In particular, inference should depend on minimal sufficient statistics if these are simpler than the raw data. In this article, we construct one-sided confidence intervals for a proportion which: (i) depend on the raw binary data, and (ii) are uniformly shorter than the smallest intervals based on the binomial random variable-a minimal sufficient statistic. In practice, randomized confidence intervals are seldom used. The proposed intervals violate the aforementioned principle if the search of optimal intervals is restricted within the class of nonrandomized confidence intervals. Similar results occur for other discrete distributions. |
doi_str_mv | 10.1080/00031305.2017.1305292 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_45116979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45116979</jstor_id><sourcerecordid>45116979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-1d831d7a1dcc01990f7b1a56bbbfee0b1d1e4feb21213671a90c0b0e17bba1dc3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWC8_obDU560zm91N981SvGFBofY5JNlEUtqkJqnaf-8uVR99mss53wwcQoYIY4QJXAMARQrVuABk474rmuKIDLCiLC8YxWMy6D15L52SsxhX3QisLgbkaZqNXkQQrf8aZdZlM--MbbVTOnt0SYcPse53MYWdSta7bBmte8sWO2OsstqlbJFEsjFZFS_IiRHrqC9_6jlZ3t2-zh7y-fP942w6zxWtIeXYTii2TGCrFGDTgGESRVVLKY3WILFFXRotCyyQ1gxFAwokaGRS9hA9J1eHu9vg33c6Jr7yu-C6l7yoypKWdUWrzlUdXCr4GIM2fBvsRoQ9R-B9bvw3N97nxn9y67jhgVvF5MMfVFaIdcOaTr856NYZHzbi04d1y5PYr30wQThlI6f_v_gG5FF9fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544346535</pqid></control><display><type>article</type><title>A "Paradox" in Confidence Interval Construction Using Sufficient Statistics</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Wang, Weizhen</creator><creatorcontrib>Wang, Weizhen</creatorcontrib><description>Statistical inference about parameters should depend on raw data only through sufficient statistics-the well known sufficiency principle. In particular, inference should depend on minimal sufficient statistics if these are simpler than the raw data. In this article, we construct one-sided confidence intervals for a proportion which: (i) depend on the raw binary data, and (ii) are uniformly shorter than the smallest intervals based on the binomial random variable-a minimal sufficient statistic. In practice, randomized confidence intervals are seldom used. The proposed intervals violate the aforementioned principle if the search of optimal intervals is restricted within the class of nonrandomized confidence intervals. Similar results occur for other discrete distributions.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2017.1305292</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Admissible confidence interval ; Binary data ; Binomial distribution ; Confidence intervals ; Nonrandomized inference ; One-sided confidence interval ; Order ; Random variables ; Regression analysis ; Statistical analysis ; Statistical inference ; Statistical methods ; Statistics</subject><ispartof>The American statistician, 2018-10, Vol.72 (4), p.315-320</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright 2018 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-1d831d7a1dcc01990f7b1a56bbbfee0b1d1e4feb21213671a90c0b0e17bba1dc3</citedby><cites>FETCH-LOGICAL-c360t-1d831d7a1dcc01990f7b1a56bbbfee0b1d1e4feb21213671a90c0b0e17bba1dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45116979$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45116979$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Wang, Weizhen</creatorcontrib><title>A "Paradox" in Confidence Interval Construction Using Sufficient Statistics</title><title>The American statistician</title><description>Statistical inference about parameters should depend on raw data only through sufficient statistics-the well known sufficiency principle. In particular, inference should depend on minimal sufficient statistics if these are simpler than the raw data. In this article, we construct one-sided confidence intervals for a proportion which: (i) depend on the raw binary data, and (ii) are uniformly shorter than the smallest intervals based on the binomial random variable-a minimal sufficient statistic. In practice, randomized confidence intervals are seldom used. The proposed intervals violate the aforementioned principle if the search of optimal intervals is restricted within the class of nonrandomized confidence intervals. Similar results occur for other discrete distributions.</description><subject>Admissible confidence interval</subject><subject>Binary data</subject><subject>Binomial distribution</subject><subject>Confidence intervals</subject><subject>Nonrandomized inference</subject><subject>One-sided confidence interval</subject><subject>Order</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWC8_obDU560zm91N981SvGFBofY5JNlEUtqkJqnaf-8uVR99mss53wwcQoYIY4QJXAMARQrVuABk474rmuKIDLCiLC8YxWMy6D15L52SsxhX3QisLgbkaZqNXkQQrf8aZdZlM--MbbVTOnt0SYcPse53MYWdSta7bBmte8sWO2OsstqlbJFEsjFZFS_IiRHrqC9_6jlZ3t2-zh7y-fP942w6zxWtIeXYTii2TGCrFGDTgGESRVVLKY3WILFFXRotCyyQ1gxFAwokaGRS9hA9J1eHu9vg33c6Jr7yu-C6l7yoypKWdUWrzlUdXCr4GIM2fBvsRoQ9R-B9bvw3N97nxn9y67jhgVvF5MMfVFaIdcOaTr856NYZHzbi04d1y5PYr30wQThlI6f_v_gG5FF9fA</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Wang, Weizhen</creator><general>Taylor & Francis</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181002</creationdate><title>A "Paradox" in Confidence Interval Construction Using Sufficient Statistics</title><author>Wang, Weizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-1d831d7a1dcc01990f7b1a56bbbfee0b1d1e4feb21213671a90c0b0e17bba1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Admissible confidence interval</topic><topic>Binary data</topic><topic>Binomial distribution</topic><topic>Confidence intervals</topic><topic>Nonrandomized inference</topic><topic>One-sided confidence interval</topic><topic>Order</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Weizhen</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Weizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A "Paradox" in Confidence Interval Construction Using Sufficient Statistics</atitle><jtitle>The American statistician</jtitle><date>2018-10-02</date><risdate>2018</risdate><volume>72</volume><issue>4</issue><spage>315</spage><epage>320</epage><pages>315-320</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><abstract>Statistical inference about parameters should depend on raw data only through sufficient statistics-the well known sufficiency principle. In particular, inference should depend on minimal sufficient statistics if these are simpler than the raw data. In this article, we construct one-sided confidence intervals for a proportion which: (i) depend on the raw binary data, and (ii) are uniformly shorter than the smallest intervals based on the binomial random variable-a minimal sufficient statistic. In practice, randomized confidence intervals are seldom used. The proposed intervals violate the aforementioned principle if the search of optimal intervals is restricted within the class of nonrandomized confidence intervals. Similar results occur for other discrete distributions.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/00031305.2017.1305292</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-1305 |
ispartof | The American statistician, 2018-10, Vol.72 (4), p.315-320 |
issn | 0003-1305 1537-2731 |
language | eng |
recordid | cdi_jstor_primary_45116979 |
source | JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Admissible confidence interval Binary data Binomial distribution Confidence intervals Nonrandomized inference One-sided confidence interval Order Random variables Regression analysis Statistical analysis Statistical inference Statistical methods Statistics |
title | A "Paradox" in Confidence Interval Construction Using Sufficient Statistics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20%22Paradox%22%20in%20Confidence%20Interval%20Construction%20Using%20Sufficient%20Statistics&rft.jtitle=The%20American%20statistician&rft.au=Wang,%20Weizhen&rft.date=2018-10-02&rft.volume=72&rft.issue=4&rft.spage=315&rft.epage=320&rft.pages=315-320&rft.issn=0003-1305&rft.eissn=1537-2731&rft_id=info:doi/10.1080/00031305.2017.1305292&rft_dat=%3Cjstor_proqu%3E45116979%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-1d831d7a1dcc01990f7b1a56bbbfee0b1d1e4feb21213671a90c0b0e17bba1dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544346535&rft_id=info:pmid/&rft_jstor_id=45116979&rfr_iscdi=true |