Loading…

On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates

This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate param...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1991-12, Vol.435 (1895), p.591-604
Main Authors: Forbes, Lawrence K., Myerscough, Mary R., Gray, Brian Frederick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673
cites cdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673
container_end_page 604
container_issue 1895
container_start_page 591
container_title Proceedings of the Royal Society. A, Mathematical and physical sciences
container_volume 435
creator Forbes, Lawrence K.
Myerscough, Mary R.
Gray, Brian Frederick
description This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space.
doi_str_mv 10.1098/rspa.1991.0163
format article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_jstor_primary_52094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>52094</jstor_id><sourcerecordid>52094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</originalsourceid><addsrcrecordid>eNp9UU2P0zAQjRBILIUrB06-7SnFju005oJW3eVDdOnSrThwsVxnQtxN48h2t1v-A_8Zp0GVKsSeZkbz3sybN0nymuAxwaJ463ynxkQIMsYkp0-SM8ImJM0Ey5_GnOYs5Tgjz5MX3q8xxoIXk7Pk97xFoQZ048BDqwHZCs3MxoR0utcNeGRapNC1LaFBVw82Qt3GaDStIQbVoAUoHYxt36Fb1Zy35s7en3s099o0jQrWoZ0JNVruLFrCpgOnwtZBegkdtCW04chHCxXAv0yeVarx8OpvHCXLD1fL6ad0Nv_4eXoxSzUVhKaKUlKxYlVyjUuFc8VWVFOVaSbyjJIScox1CYyDKAtOBF4pVpWrEgusIJ_QUTIexmpnvXdQyc6ZjXJ7SbDsvZS9l7L3UvZeRgIdCM7uoy6rDYS9XNuta2P5f5Z_jLW4vbmIYHzPKDekEFzighKc8zzj8pfpDuN6gIwAabzfgjzATtf8u_XNsHXto__Hy3iGBYvNdGgaH-Dh2FTuTkZfJlx-L5hcUPHlG73-Kn9EPBnwtflZ74wDeXJLLDrn1UHgQRqP7xkl7x_l9HK1bUN8_wlRVtumkV1Z0T-XoODn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</title><source>JSTOR</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Forbes, Lawrence K. ; Myerscough, Mary R. ; Gray, Brian Frederick</creator><creatorcontrib>Forbes, Lawrence K. ; Myerscough, Mary R. ; Gray, Brian Frederick</creatorcontrib><description>This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0962-8444</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9177</identifier><identifier>DOI: 10.1098/rspa.1991.0163</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Ambient temperature ; Chemical reactions ; Limit cycles ; Mathematical constants ; Oscillation ; Oscillators ; Phase plane ; Reaction kinetics ; Steady states ; Temperature dependence</subject><ispartof>Proceedings of the Royal Society. A, Mathematical and physical sciences, 1991-12, Vol.435 (1895), p.591-604</ispartof><rights>Copyright 1991 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</citedby><cites>FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/52094$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/52094$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Forbes, Lawrence K.</creatorcontrib><creatorcontrib>Myerscough, Mary R.</creatorcontrib><creatorcontrib>Gray, Brian Frederick</creatorcontrib><title>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</title><title>Proceedings of the Royal Society. A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space.</description><subject>Ambient temperature</subject><subject>Chemical reactions</subject><subject>Limit cycles</subject><subject>Mathematical constants</subject><subject>Oscillation</subject><subject>Oscillators</subject><subject>Phase plane</subject><subject>Reaction kinetics</subject><subject>Steady states</subject><subject>Temperature dependence</subject><issn>1364-5021</issn><issn>0962-8444</issn><issn>1471-2946</issn><issn>2053-9177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9UU2P0zAQjRBILIUrB06-7SnFju005oJW3eVDdOnSrThwsVxnQtxN48h2t1v-A_8Zp0GVKsSeZkbz3sybN0nymuAxwaJ463ynxkQIMsYkp0-SM8ImJM0Ey5_GnOYs5Tgjz5MX3q8xxoIXk7Pk97xFoQZ048BDqwHZCs3MxoR0utcNeGRapNC1LaFBVw82Qt3GaDStIQbVoAUoHYxt36Fb1Zy35s7en3s099o0jQrWoZ0JNVruLFrCpgOnwtZBegkdtCW04chHCxXAv0yeVarx8OpvHCXLD1fL6ad0Nv_4eXoxSzUVhKaKUlKxYlVyjUuFc8VWVFOVaSbyjJIScox1CYyDKAtOBF4pVpWrEgusIJ_QUTIexmpnvXdQyc6ZjXJ7SbDsvZS9l7L3UvZeRgIdCM7uoy6rDYS9XNuta2P5f5Z_jLW4vbmIYHzPKDekEFzighKc8zzj8pfpDuN6gIwAabzfgjzATtf8u_XNsHXto__Hy3iGBYvNdGgaH-Dh2FTuTkZfJlx-L5hcUPHlG73-Kn9EPBnwtflZ74wDeXJLLDrn1UHgQRqP7xkl7x_l9HK1bUN8_wlRVtumkV1Z0T-XoODn</recordid><startdate>19911209</startdate><enddate>19911209</enddate><creator>Forbes, Lawrence K.</creator><creator>Myerscough, Mary R.</creator><creator>Gray, Brian Frederick</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19911209</creationdate><title>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</title><author>Forbes, Lawrence K. ; Myerscough, Mary R. ; Gray, Brian Frederick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Ambient temperature</topic><topic>Chemical reactions</topic><topic>Limit cycles</topic><topic>Mathematical constants</topic><topic>Oscillation</topic><topic>Oscillators</topic><topic>Phase plane</topic><topic>Reaction kinetics</topic><topic>Steady states</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Forbes, Lawrence K.</creatorcontrib><creatorcontrib>Myerscough, Mary R.</creatorcontrib><creatorcontrib>Gray, Brian Frederick</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forbes, Lawrence K.</au><au>Myerscough, Mary R.</au><au>Gray, Brian Frederick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1991-12-09</date><risdate>1991</risdate><volume>435</volume><issue>1895</issue><spage>591</spage><epage>604</epage><pages>591-604</pages><issn>1364-5021</issn><issn>0962-8444</issn><eissn>1471-2946</eissn><eissn>2053-9177</eissn><abstract>This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1991.0163</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical and physical sciences, 1991-12, Vol.435 (1895), p.591-604
issn 1364-5021
0962-8444
1471-2946
2053-9177
language eng
recordid cdi_jstor_primary_52094
source JSTOR; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Ambient temperature
Chemical reactions
Limit cycles
Mathematical constants
Oscillation
Oscillators
Phase plane
Reaction kinetics
Steady states
Temperature dependence
title On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Presence%20of%20Limit-Cycles%20in%20a%20Model%20Exothermic%20Chemical%20Reaction:%20Sal'nikov's%20Oscillator%20with%20Two%20Temperature-Dependent%20Reaction%20Rates&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Forbes,%20Lawrence%20K.&rft.date=1991-12-09&rft.volume=435&rft.issue=1895&rft.spage=591&rft.epage=604&rft.pages=591-604&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1991.0163&rft_dat=%3Cjstor_highw%3E52094%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=52094&rfr_iscdi=true