Loading…
On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates
This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate param...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1991-12, Vol.435 (1895), p.591-604 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673 |
---|---|
cites | cdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673 |
container_end_page | 604 |
container_issue | 1895 |
container_start_page | 591 |
container_title | Proceedings of the Royal Society. A, Mathematical and physical sciences |
container_volume | 435 |
creator | Forbes, Lawrence K. Myerscough, Mary R. Gray, Brian Frederick |
description | This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space. |
doi_str_mv | 10.1098/rspa.1991.0163 |
format | article |
fullrecord | <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_jstor_primary_52094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>52094</jstor_id><sourcerecordid>52094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</originalsourceid><addsrcrecordid>eNp9UU2P0zAQjRBILIUrB06-7SnFju005oJW3eVDdOnSrThwsVxnQtxN48h2t1v-A_8Zp0GVKsSeZkbz3sybN0nymuAxwaJ463ynxkQIMsYkp0-SM8ImJM0Ey5_GnOYs5Tgjz5MX3q8xxoIXk7Pk97xFoQZ048BDqwHZCs3MxoR0utcNeGRapNC1LaFBVw82Qt3GaDStIQbVoAUoHYxt36Fb1Zy35s7en3s099o0jQrWoZ0JNVruLFrCpgOnwtZBegkdtCW04chHCxXAv0yeVarx8OpvHCXLD1fL6ad0Nv_4eXoxSzUVhKaKUlKxYlVyjUuFc8VWVFOVaSbyjJIScox1CYyDKAtOBF4pVpWrEgusIJ_QUTIexmpnvXdQyc6ZjXJ7SbDsvZS9l7L3UvZeRgIdCM7uoy6rDYS9XNuta2P5f5Z_jLW4vbmIYHzPKDekEFzighKc8zzj8pfpDuN6gIwAabzfgjzATtf8u_XNsHXto__Hy3iGBYvNdGgaH-Dh2FTuTkZfJlx-L5hcUPHlG73-Kn9EPBnwtflZ74wDeXJLLDrn1UHgQRqP7xkl7x_l9HK1bUN8_wlRVtumkV1Z0T-XoODn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</title><source>JSTOR</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Forbes, Lawrence K. ; Myerscough, Mary R. ; Gray, Brian Frederick</creator><creatorcontrib>Forbes, Lawrence K. ; Myerscough, Mary R. ; Gray, Brian Frederick</creatorcontrib><description>This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0962-8444</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9177</identifier><identifier>DOI: 10.1098/rspa.1991.0163</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Ambient temperature ; Chemical reactions ; Limit cycles ; Mathematical constants ; Oscillation ; Oscillators ; Phase plane ; Reaction kinetics ; Steady states ; Temperature dependence</subject><ispartof>Proceedings of the Royal Society. A, Mathematical and physical sciences, 1991-12, Vol.435 (1895), p.591-604</ispartof><rights>Copyright 1991 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</citedby><cites>FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/52094$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/52094$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Forbes, Lawrence K.</creatorcontrib><creatorcontrib>Myerscough, Mary R.</creatorcontrib><creatorcontrib>Gray, Brian Frederick</creatorcontrib><title>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</title><title>Proceedings of the Royal Society. A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space.</description><subject>Ambient temperature</subject><subject>Chemical reactions</subject><subject>Limit cycles</subject><subject>Mathematical constants</subject><subject>Oscillation</subject><subject>Oscillators</subject><subject>Phase plane</subject><subject>Reaction kinetics</subject><subject>Steady states</subject><subject>Temperature dependence</subject><issn>1364-5021</issn><issn>0962-8444</issn><issn>1471-2946</issn><issn>2053-9177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9UU2P0zAQjRBILIUrB06-7SnFju005oJW3eVDdOnSrThwsVxnQtxN48h2t1v-A_8Zp0GVKsSeZkbz3sybN0nymuAxwaJ463ynxkQIMsYkp0-SM8ImJM0Ey5_GnOYs5Tgjz5MX3q8xxoIXk7Pk97xFoQZ048BDqwHZCs3MxoR0utcNeGRapNC1LaFBVw82Qt3GaDStIQbVoAUoHYxt36Fb1Zy35s7en3s099o0jQrWoZ0JNVruLFrCpgOnwtZBegkdtCW04chHCxXAv0yeVarx8OpvHCXLD1fL6ad0Nv_4eXoxSzUVhKaKUlKxYlVyjUuFc8VWVFOVaSbyjJIScox1CYyDKAtOBF4pVpWrEgusIJ_QUTIexmpnvXdQyc6ZjXJ7SbDsvZS9l7L3UvZeRgIdCM7uoy6rDYS9XNuta2P5f5Z_jLW4vbmIYHzPKDekEFzighKc8zzj8pfpDuN6gIwAabzfgjzATtf8u_XNsHXto__Hy3iGBYvNdGgaH-Dh2FTuTkZfJlx-L5hcUPHlG73-Kn9EPBnwtflZ74wDeXJLLDrn1UHgQRqP7xkl7x_l9HK1bUN8_wlRVtumkV1Z0T-XoODn</recordid><startdate>19911209</startdate><enddate>19911209</enddate><creator>Forbes, Lawrence K.</creator><creator>Myerscough, Mary R.</creator><creator>Gray, Brian Frederick</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19911209</creationdate><title>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</title><author>Forbes, Lawrence K. ; Myerscough, Mary R. ; Gray, Brian Frederick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Ambient temperature</topic><topic>Chemical reactions</topic><topic>Limit cycles</topic><topic>Mathematical constants</topic><topic>Oscillation</topic><topic>Oscillators</topic><topic>Phase plane</topic><topic>Reaction kinetics</topic><topic>Steady states</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Forbes, Lawrence K.</creatorcontrib><creatorcontrib>Myerscough, Mary R.</creatorcontrib><creatorcontrib>Gray, Brian Frederick</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forbes, Lawrence K.</au><au>Myerscough, Mary R.</au><au>Gray, Brian Frederick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1991-12-09</date><risdate>1991</risdate><volume>435</volume><issue>1895</issue><spage>591</spage><epage>604</epage><pages>591-604</pages><issn>1364-5021</issn><issn>0962-8444</issn><eissn>1471-2946</eissn><eissn>2053-9177</eissn><abstract>This paper investigates a model chemical reaction in which a single substance undergoes a two-stage process of decay, first producing an intermediate species and finally giving a product chemical. Each of the two stages involves only simple first-order reaction kinetics, but the governing rate parameter for each of the two reactions is temperature dependent. The reaction vessel is assumed to be well stirred, and the rate of each reaction is governed by Arrhenius kinetics, although with a different activation energy for each process. The mathematical behaviour of the system is therefore described by a coupled system of two highly nonlinear ordinary differential equations for the concentration of the intermediate species and the temperature, arising from the rate equation and the energy conservation equation. This simple model is capable of predicting oscillatory behaviour in the concentration of the intermediate chemical and in the temperature. We present the Hopf condition for the emergence of these limit cycles from a homogeneous steady state, and then continue these solutions numerically into regions of the parameter space in which oscillations of very large amplitude can occur. The presence of multiple limit cycles is detected and discussed. An extension of Bendixson’s criterion is used to show that oscillatory behaviour is only possible in a certain confined region of the parameter space.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1991.0163</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical and physical sciences, 1991-12, Vol.435 (1895), p.591-604 |
issn | 1364-5021 0962-8444 1471-2946 2053-9177 |
language | eng |
recordid | cdi_jstor_primary_52094 |
source | JSTOR; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Ambient temperature Chemical reactions Limit cycles Mathematical constants Oscillation Oscillators Phase plane Reaction kinetics Steady states Temperature dependence |
title | On the Presence of Limit-Cycles in a Model Exothermic Chemical Reaction: Sal'nikov's Oscillator with Two Temperature-Dependent Reaction Rates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Presence%20of%20Limit-Cycles%20in%20a%20Model%20Exothermic%20Chemical%20Reaction:%20Sal'nikov's%20Oscillator%20with%20Two%20Temperature-Dependent%20Reaction%20Rates&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Forbes,%20Lawrence%20K.&rft.date=1991-12-09&rft.volume=435&rft.issue=1895&rft.spage=591&rft.epage=604&rft.pages=591-604&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1991.0163&rft_dat=%3Cjstor_highw%3E52094%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3913-a331f48bd5c0da06a4b3c3a2c496231de600cde45e9d85190ba4fdbd090ae673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=52094&rfr_iscdi=true |