Loading…
Modelling deformation microstructure with the crystal plasticity finite–element method
The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the sub...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1999-06, Vol.357 (1756), p.1589-1601 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323 |
---|---|
cites | cdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323 |
container_end_page | 1601 |
container_issue | 1756 |
container_start_page | 1589 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 357 |
creator | Bate, Peter |
description | The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible. |
doi_str_mv | 10.1098/rsta.1999.0391 |
format | article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_jstor_primary_55202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>55202</jstor_id><sourcerecordid>55202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRBIlMKWBav8QAY_YjveUU0pIBWQYEAVGytxbhoPSTyyHUpY8Q_8IV-Ck6BKI0RXtnXP6x4nyVOMNhjJ4rnzodxgKeUGUYnvJSc4FzgjkpP78U55njFErx4mj7zfI4QxZ-QkuXpra-g6M1ynNTTW9WUwdkh7o531wY06jA7SGxPaNLSQajdFly49dKUPRpswpY0ZTIDfP39BBz0MIe0htLZ-nDxoys7Dk7_nafLp4uVu-zq7fP_qzfbsMtMsZyGrKCEEYaJpybUUuMgBCCkqUVNMEMFa50ARl6hqClE0ZSkqxhCvdSWFAEroabJZdefA3kGjDs70pZsURmruRc29qLkXNfcSCXQlODvFYFYbCJPa29EN8fl_lr-L9eHj7iyC-TfKhMGCcYUKipHIEeLqhzkscjNARYAy3o-gFtixzb-uz1bXvQ_W3W7GWKwmDrN1aHyA77fD0n1VXFDB1OciV7vtO3ku6Bd1HvEvVnxrrtsb40Ad7bJYazuE-IdLyiUfZoVUzdh16lA3UQLfKWGnQxQ5ItM_ir3QrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling deformation microstructure with the crystal plasticity finite–element method</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Bate, Peter</creator><contributor>Stowell, M.J. ; Shercliff, H.R. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M. ; Shercliff, H.R. ; Stowell, M.J. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M.</contributor><creatorcontrib>Bate, Peter ; Stowell, M.J. ; Shercliff, H.R. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M. ; Shercliff, H.R. ; Stowell, M.J. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M.</creatorcontrib><description>The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.1999.0391</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Continuum Approximation ; Crystals ; Cubes ; Deformation ; Deformation Banding ; Materials ; Modeling ; Orientation Splitting ; Plane stress ; Plasticity ; Polycrystals ; Rate-Sensitive Slip ; Recrystallization ; Recrystallization Modelling ; Relaxed Constraint ; Surface texture</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-06, Vol.357 (1756), p.1589-1601</ispartof><rights>Copyright 1999 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</citedby><cites>FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/55202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/55202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58217,58450</link.rule.ids></links><search><contributor>Stowell, M.J.</contributor><contributor>Shercliff, H.R.</contributor><contributor>Humphreys, F.J.</contributor><contributor>Ashby, M. F.</contributor><contributor>Sellar, C.M.</contributor><contributor>Shercliff, H.R.</contributor><contributor>Stowell, M.J.</contributor><contributor>Humphreys, F.J.</contributor><contributor>Ashby, M. F.</contributor><contributor>Sellar, C.M.</contributor><creatorcontrib>Bate, Peter</creatorcontrib><title>Modelling deformation microstructure with the crystal plasticity finite–element method</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible.</description><subject>Continuum Approximation</subject><subject>Crystals</subject><subject>Cubes</subject><subject>Deformation</subject><subject>Deformation Banding</subject><subject>Materials</subject><subject>Modeling</subject><subject>Orientation Splitting</subject><subject>Plane stress</subject><subject>Plasticity</subject><subject>Polycrystals</subject><subject>Rate-Sensitive Slip</subject><subject>Recrystallization</subject><subject>Recrystallization Modelling</subject><subject>Relaxed Constraint</subject><subject>Surface texture</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUjRBIlMKWBav8QAY_YjveUU0pIBWQYEAVGytxbhoPSTyyHUpY8Q_8IV-Ck6BKI0RXtnXP6x4nyVOMNhjJ4rnzodxgKeUGUYnvJSc4FzgjkpP78U55njFErx4mj7zfI4QxZ-QkuXpra-g6M1ynNTTW9WUwdkh7o531wY06jA7SGxPaNLSQajdFly49dKUPRpswpY0ZTIDfP39BBz0MIe0htLZ-nDxoys7Dk7_nafLp4uVu-zq7fP_qzfbsMtMsZyGrKCEEYaJpybUUuMgBCCkqUVNMEMFa50ARl6hqClE0ZSkqxhCvdSWFAEroabJZdefA3kGjDs70pZsURmruRc29qLkXNfcSCXQlODvFYFYbCJPa29EN8fl_lr-L9eHj7iyC-TfKhMGCcYUKipHIEeLqhzkscjNARYAy3o-gFtixzb-uz1bXvQ_W3W7GWKwmDrN1aHyA77fD0n1VXFDB1OciV7vtO3ku6Bd1HvEvVnxrrtsb40Ad7bJYazuE-IdLyiUfZoVUzdh16lA3UQLfKWGnQxQ5ItM_ir3QrA</recordid><startdate>19990615</startdate><enddate>19990615</enddate><creator>Bate, Peter</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990615</creationdate><title>Modelling deformation microstructure with the crystal plasticity finite–element method</title><author>Bate, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Continuum Approximation</topic><topic>Crystals</topic><topic>Cubes</topic><topic>Deformation</topic><topic>Deformation Banding</topic><topic>Materials</topic><topic>Modeling</topic><topic>Orientation Splitting</topic><topic>Plane stress</topic><topic>Plasticity</topic><topic>Polycrystals</topic><topic>Rate-Sensitive Slip</topic><topic>Recrystallization</topic><topic>Recrystallization Modelling</topic><topic>Relaxed Constraint</topic><topic>Surface texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bate, Peter</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bate, Peter</au><au>Stowell, M.J.</au><au>Shercliff, H.R.</au><au>Humphreys, F.J.</au><au>Ashby, M. F.</au><au>Sellar, C.M.</au><au>Shercliff, H.R.</au><au>Stowell, M.J.</au><au>Humphreys, F.J.</au><au>Ashby, M. F.</au><au>Sellar, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling deformation microstructure with the crystal plasticity finite–element method</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>1999-06-15</date><risdate>1999</risdate><volume>357</volume><issue>1756</issue><spage>1589</spage><epage>1601</epage><pages>1589-1601</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible.</abstract><pub>The Royal Society</pub><doi>10.1098/rsta.1999.0391</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-06, Vol.357 (1756), p.1589-1601 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_55202 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Continuum Approximation Crystals Cubes Deformation Deformation Banding Materials Modeling Orientation Splitting Plane stress Plasticity Polycrystals Rate-Sensitive Slip Recrystallization Recrystallization Modelling Relaxed Constraint Surface texture |
title | Modelling deformation microstructure with the crystal plasticity finite–element method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20deformation%20microstructure%20with%20the%20crystal%20plasticity%20finite%E2%80%93element%20method&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bate,%20Peter&rft.date=1999-06-15&rft.volume=357&rft.issue=1756&rft.spage=1589&rft.epage=1601&rft.pages=1589-1601&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1999.0391&rft_dat=%3Cjstor_istex%3E55202%3C/jstor_istex%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=55202&rfr_iscdi=true |