Loading…

Modelling deformation microstructure with the crystal plasticity finite–element method

The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the sub...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1999-06, Vol.357 (1756), p.1589-1601
Main Author: Bate, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323
cites cdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323
container_end_page 1601
container_issue 1756
container_start_page 1589
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 357
creator Bate, Peter
description The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible.
doi_str_mv 10.1098/rsta.1999.0391
format article
fullrecord <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_jstor_primary_55202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>55202</jstor_id><sourcerecordid>55202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRBIlMKWBav8QAY_YjveUU0pIBWQYEAVGytxbhoPSTyyHUpY8Q_8IV-Ck6BKI0RXtnXP6x4nyVOMNhjJ4rnzodxgKeUGUYnvJSc4FzgjkpP78U55njFErx4mj7zfI4QxZ-QkuXpra-g6M1ynNTTW9WUwdkh7o531wY06jA7SGxPaNLSQajdFly49dKUPRpswpY0ZTIDfP39BBz0MIe0htLZ-nDxoys7Dk7_nafLp4uVu-zq7fP_qzfbsMtMsZyGrKCEEYaJpybUUuMgBCCkqUVNMEMFa50ARl6hqClE0ZSkqxhCvdSWFAEroabJZdefA3kGjDs70pZsURmruRc29qLkXNfcSCXQlODvFYFYbCJPa29EN8fl_lr-L9eHj7iyC-TfKhMGCcYUKipHIEeLqhzkscjNARYAy3o-gFtixzb-uz1bXvQ_W3W7GWKwmDrN1aHyA77fD0n1VXFDB1OciV7vtO3ku6Bd1HvEvVnxrrtsb40Ad7bJYazuE-IdLyiUfZoVUzdh16lA3UQLfKWGnQxQ5ItM_ir3QrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling deformation microstructure with the crystal plasticity finite–element method</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Bate, Peter</creator><contributor>Stowell, M.J. ; Shercliff, H.R. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M. ; Shercliff, H.R. ; Stowell, M.J. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M.</contributor><creatorcontrib>Bate, Peter ; Stowell, M.J. ; Shercliff, H.R. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M. ; Shercliff, H.R. ; Stowell, M.J. ; Humphreys, F.J. ; Ashby, M. F. ; Sellar, C.M.</creatorcontrib><description>The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.1999.0391</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Continuum Approximation ; Crystals ; Cubes ; Deformation ; Deformation Banding ; Materials ; Modeling ; Orientation Splitting ; Plane stress ; Plasticity ; Polycrystals ; Rate-Sensitive Slip ; Recrystallization ; Recrystallization Modelling ; Relaxed Constraint ; Surface texture</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-06, Vol.357 (1756), p.1589-1601</ispartof><rights>Copyright 1999 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</citedby><cites>FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/55202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/55202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58217,58450</link.rule.ids></links><search><contributor>Stowell, M.J.</contributor><contributor>Shercliff, H.R.</contributor><contributor>Humphreys, F.J.</contributor><contributor>Ashby, M. F.</contributor><contributor>Sellar, C.M.</contributor><contributor>Shercliff, H.R.</contributor><contributor>Stowell, M.J.</contributor><contributor>Humphreys, F.J.</contributor><contributor>Ashby, M. F.</contributor><contributor>Sellar, C.M.</contributor><creatorcontrib>Bate, Peter</creatorcontrib><title>Modelling deformation microstructure with the crystal plasticity finite–element method</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible.</description><subject>Continuum Approximation</subject><subject>Crystals</subject><subject>Cubes</subject><subject>Deformation</subject><subject>Deformation Banding</subject><subject>Materials</subject><subject>Modeling</subject><subject>Orientation Splitting</subject><subject>Plane stress</subject><subject>Plasticity</subject><subject>Polycrystals</subject><subject>Rate-Sensitive Slip</subject><subject>Recrystallization</subject><subject>Recrystallization Modelling</subject><subject>Relaxed Constraint</subject><subject>Surface texture</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUjRBIlMKWBav8QAY_YjveUU0pIBWQYEAVGytxbhoPSTyyHUpY8Q_8IV-Ck6BKI0RXtnXP6x4nyVOMNhjJ4rnzodxgKeUGUYnvJSc4FzgjkpP78U55njFErx4mj7zfI4QxZ-QkuXpra-g6M1ynNTTW9WUwdkh7o531wY06jA7SGxPaNLSQajdFly49dKUPRpswpY0ZTIDfP39BBz0MIe0htLZ-nDxoys7Dk7_nafLp4uVu-zq7fP_qzfbsMtMsZyGrKCEEYaJpybUUuMgBCCkqUVNMEMFa50ARl6hqClE0ZSkqxhCvdSWFAEroabJZdefA3kGjDs70pZsURmruRc29qLkXNfcSCXQlODvFYFYbCJPa29EN8fl_lr-L9eHj7iyC-TfKhMGCcYUKipHIEeLqhzkscjNARYAy3o-gFtixzb-uz1bXvQ_W3W7GWKwmDrN1aHyA77fD0n1VXFDB1OciV7vtO3ku6Bd1HvEvVnxrrtsb40Ad7bJYazuE-IdLyiUfZoVUzdh16lA3UQLfKWGnQxQ5ItM_ir3QrA</recordid><startdate>19990615</startdate><enddate>19990615</enddate><creator>Bate, Peter</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990615</creationdate><title>Modelling deformation microstructure with the crystal plasticity finite–element method</title><author>Bate, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Continuum Approximation</topic><topic>Crystals</topic><topic>Cubes</topic><topic>Deformation</topic><topic>Deformation Banding</topic><topic>Materials</topic><topic>Modeling</topic><topic>Orientation Splitting</topic><topic>Plane stress</topic><topic>Plasticity</topic><topic>Polycrystals</topic><topic>Rate-Sensitive Slip</topic><topic>Recrystallization</topic><topic>Recrystallization Modelling</topic><topic>Relaxed Constraint</topic><topic>Surface texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bate, Peter</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bate, Peter</au><au>Stowell, M.J.</au><au>Shercliff, H.R.</au><au>Humphreys, F.J.</au><au>Ashby, M. F.</au><au>Sellar, C.M.</au><au>Shercliff, H.R.</au><au>Stowell, M.J.</au><au>Humphreys, F.J.</au><au>Ashby, M. F.</au><au>Sellar, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling deformation microstructure with the crystal plasticity finite–element method</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>1999-06-15</date><risdate>1999</risdate><volume>357</volume><issue>1756</issue><spage>1589</spage><epage>1601</epage><pages>1589-1601</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The finite-element (FE) method is commonly used to solve boundary value problems in continua. Constitutive equations based on crystal plasticity have been implemented in FE simulations, and these slip-based calculations have the potential to model a variety of interesting phenomena. However, the substructure of the deformed state in metals is inherently discontinuous. To what extent continuum plasticity calculations can be reasonably used for deformation microstructure predictions depends on the microstructural interpretation of the constitutive models. It is possible with quite simple models to predict orientation gradients at large second-phase particles and at grain boundaries. Because of the implicit link between the substructure and mechanical behaviour of metals, and the great flexibility that crystal plasticity models have, the prediction of at least some of the more important aspects of substructure, by association with state variables, is possible.</abstract><pub>The Royal Society</pub><doi>10.1098/rsta.1999.0391</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 1999-06, Vol.357 (1756), p.1589-1601
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_55202
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Continuum Approximation
Crystals
Cubes
Deformation
Deformation Banding
Materials
Modeling
Orientation Splitting
Plane stress
Plasticity
Polycrystals
Rate-Sensitive Slip
Recrystallization
Recrystallization Modelling
Relaxed Constraint
Surface texture
title Modelling deformation microstructure with the crystal plasticity finite–element method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20deformation%20microstructure%20with%20the%20crystal%20plasticity%20finite%E2%80%93element%20method&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bate,%20Peter&rft.date=1999-06-15&rft.volume=357&rft.issue=1756&rft.spage=1589&rft.epage=1601&rft.pages=1589-1601&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.1999.0391&rft_dat=%3Cjstor_istex%3E55202%3C/jstor_istex%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-b3222012c3a6c97184ee228b7d312021cc4e30690bf878faa7b5506dcb977e323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=55202&rfr_iscdi=true