Loading…

An 'ab initio' Gaussian Orbital Calculation of the (100) Surface of Crystalline Lithium Hydride

Ab ab initio computation has been performed for the (100) face of a lithium hydride ionic crystal. The computation follows a similar computation performed earlier for an infinite crystal of lithium hydride. A simple wavefunction of a type proposed by A. A. Frost was used in which pairs of electrons...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1972-12, Vol.331 (1586), p.347-359
Main Authors: Erickson, W. D., Linnett, J. W.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-90b6d8c7c6166d332560963a16d07da16403dfa4f70ec0ab092f2cf216de79183
cites
container_end_page 359
container_issue 1586
container_start_page 347
container_title Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences
container_volume 331
creator Erickson, W. D.
Linnett, J. W.
description Ab ab initio computation has been performed for the (100) face of a lithium hydride ionic crystal. The computation follows a similar computation performed earlier for an infinite crystal of lithium hydride. A simple wavefunction of a type proposed by A. A. Frost was used in which pairs of electrons are assigned to orbitals described by simple spherical Gaussian functions, the positions and sizes of which are allowed to float to minimize the energy. In the surface computation the nuclei and the Gaussian orbitals in the ultimate and penultimate layers were allowed to float freely, those in the remaining layers being disposed as in the infinite crystal. It was found that, in the surface layer, the hydrogen nuclei were farther from the fixed (third) layer than the lithium nuclei. Also, while the orbitals of the lithium ions remained centred at the same place as the nuclei, corresponding to zero polarization of the lithium ions, the hydride ions showed considerable polarization, the centres of the orbitals being displaced considerably from the nuclei. The changes in the penultimate layer are also discussed. An estimate was made of the surface energy for this face of lithium hydride and the value found was reasonable when compared with semi-empirical values for the (100) surfaces of alkali halide crystals.
doi_str_mv 10.1098/rspa.1972.0182
format article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_jstor_primary_78289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>78289</jstor_id><sourcerecordid>78289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-90b6d8c7c6166d332560963a16d07da16403dfa4f70ec0ab092f2cf216de79183</originalsourceid><addsrcrecordid>eNp9UE1r3DAQNaGBpEmuOfSkW9qDNyPJq49TWZY2KSwk5OMstLLU1eLYRpJT3F9feTcUltKcRqP33ryZVxSXGGYYpLgOsdczLDmZARbkqDjFFcclkRX7kN-UVeUcCD4pPsa4BQA5F_y0UIsWXek18q1PvrtCN3qI0esW3YW1T7pBS92YodEZbFHnUNpY9BkDfEGPQ3Da2OlzGcaYuY1vLVr5tPHDC7od6-Bre14cO91Ee_FWz4rn79-elrfl6u7mx3KxKk1FRSolrFktDDcMM1ZTSuYMJKMasxp4nUsFtHa6chysAb0GSRwxjmTccokFPStm-7kmdDEG61Qf_IsOo8KgpnjUFI-a4lFTPFlA94LQjXmxznibRrXthtDm9v-q-J7q4fF-gSWTr5Rij-eCKRAUA8_3SPXb97txE0FlgvIxDlbtaIc2_7p-2rtuY-rC38u4IEJmEO_Bjf-5-eWDVQe75aYPUe8Md1a04lnz9V3NZG-6Ntk2HQiVG5pG9bWjfwCnUr9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An 'ab initio' Gaussian Orbital Calculation of the (100) Surface of Crystalline Lithium Hydride</title><source>JSTOR</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Erickson, W. D. ; Linnett, J. W.</creator><creatorcontrib>Erickson, W. D. ; Linnett, J. W.</creatorcontrib><description>Ab ab initio computation has been performed for the (100) face of a lithium hydride ionic crystal. The computation follows a similar computation performed earlier for an infinite crystal of lithium hydride. A simple wavefunction of a type proposed by A. A. Frost was used in which pairs of electrons are assigned to orbitals described by simple spherical Gaussian functions, the positions and sizes of which are allowed to float to minimize the energy. In the surface computation the nuclei and the Gaussian orbitals in the ultimate and penultimate layers were allowed to float freely, those in the remaining layers being disposed as in the infinite crystal. It was found that, in the surface layer, the hydrogen nuclei were farther from the fixed (third) layer than the lithium nuclei. Also, while the orbitals of the lithium ions remained centred at the same place as the nuclei, corresponding to zero polarization of the lithium ions, the hydride ions showed considerable polarization, the centres of the orbitals being displaced considerably from the nuclei. The changes in the penultimate layer are also discussed. An estimate was made of the surface energy for this face of lithium hydride and the value found was reasonable when compared with semi-empirical values for the (100) surfaces of alkali halide crystals.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1972.0182</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Coordinate systems ; Crystal lattices ; Crystals ; Energy ; Energy value ; Hydrides ; Lithium ; Molecules ; Orbitals ; Surface energy</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1972-12, Vol.331 (1586), p.347-359</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-90b6d8c7c6166d332560963a16d07da16403dfa4f70ec0ab092f2cf216de79183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/78289$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/78289$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Erickson, W. D.</creatorcontrib><creatorcontrib>Linnett, J. W.</creatorcontrib><title>An 'ab initio' Gaussian Orbital Calculation of the (100) Surface of Crystalline Lithium Hydride</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><description>Ab ab initio computation has been performed for the (100) face of a lithium hydride ionic crystal. The computation follows a similar computation performed earlier for an infinite crystal of lithium hydride. A simple wavefunction of a type proposed by A. A. Frost was used in which pairs of electrons are assigned to orbitals described by simple spherical Gaussian functions, the positions and sizes of which are allowed to float to minimize the energy. In the surface computation the nuclei and the Gaussian orbitals in the ultimate and penultimate layers were allowed to float freely, those in the remaining layers being disposed as in the infinite crystal. It was found that, in the surface layer, the hydrogen nuclei were farther from the fixed (third) layer than the lithium nuclei. Also, while the orbitals of the lithium ions remained centred at the same place as the nuclei, corresponding to zero polarization of the lithium ions, the hydride ions showed considerable polarization, the centres of the orbitals being displaced considerably from the nuclei. The changes in the penultimate layer are also discussed. An estimate was made of the surface energy for this face of lithium hydride and the value found was reasonable when compared with semi-empirical values for the (100) surfaces of alkali halide crystals.</description><subject>Coordinate systems</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Energy</subject><subject>Energy value</subject><subject>Hydrides</subject><subject>Lithium</subject><subject>Molecules</subject><subject>Orbitals</subject><subject>Surface energy</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNp9UE1r3DAQNaGBpEmuOfSkW9qDNyPJq49TWZY2KSwk5OMstLLU1eLYRpJT3F9feTcUltKcRqP33ryZVxSXGGYYpLgOsdczLDmZARbkqDjFFcclkRX7kN-UVeUcCD4pPsa4BQA5F_y0UIsWXek18q1PvrtCN3qI0esW3YW1T7pBS92YodEZbFHnUNpY9BkDfEGPQ3Da2OlzGcaYuY1vLVr5tPHDC7od6-Bre14cO91Ee_FWz4rn79-elrfl6u7mx3KxKk1FRSolrFktDDcMM1ZTSuYMJKMasxp4nUsFtHa6chysAb0GSRwxjmTccokFPStm-7kmdDEG61Qf_IsOo8KgpnjUFI-a4lFTPFlA94LQjXmxznibRrXthtDm9v-q-J7q4fF-gSWTr5Rij-eCKRAUA8_3SPXb97txE0FlgvIxDlbtaIc2_7p-2rtuY-rC38u4IEJmEO_Bjf-5-eWDVQe75aYPUe8Md1a04lnz9V3NZG-6Ntk2HQiVG5pG9bWjfwCnUr9f</recordid><startdate>19721229</startdate><enddate>19721229</enddate><creator>Erickson, W. D.</creator><creator>Linnett, J. W.</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19721229</creationdate><title>An 'ab initio' Gaussian Orbital Calculation of the (100) Surface of Crystalline Lithium Hydride</title><author>Erickson, W. D. ; Linnett, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-90b6d8c7c6166d332560963a16d07da16403dfa4f70ec0ab092f2cf216de79183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><topic>Coordinate systems</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Energy</topic><topic>Energy value</topic><topic>Hydrides</topic><topic>Lithium</topic><topic>Molecules</topic><topic>Orbitals</topic><topic>Surface energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erickson, W. D.</creatorcontrib><creatorcontrib>Linnett, J. W.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erickson, W. D.</au><au>Linnett, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An 'ab initio' Gaussian Orbital Calculation of the (100) Surface of Crystalline Lithium Hydride</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><date>1972-12-29</date><risdate>1972</risdate><volume>331</volume><issue>1586</issue><spage>347</spage><epage>359</epage><pages>347-359</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><abstract>Ab ab initio computation has been performed for the (100) face of a lithium hydride ionic crystal. The computation follows a similar computation performed earlier for an infinite crystal of lithium hydride. A simple wavefunction of a type proposed by A. A. Frost was used in which pairs of electrons are assigned to orbitals described by simple spherical Gaussian functions, the positions and sizes of which are allowed to float to minimize the energy. In the surface computation the nuclei and the Gaussian orbitals in the ultimate and penultimate layers were allowed to float freely, those in the remaining layers being disposed as in the infinite crystal. It was found that, in the surface layer, the hydrogen nuclei were farther from the fixed (third) layer than the lithium nuclei. Also, while the orbitals of the lithium ions remained centred at the same place as the nuclei, corresponding to zero polarization of the lithium ions, the hydride ions showed considerable polarization, the centres of the orbitals being displaced considerably from the nuclei. The changes in the penultimate layer are also discussed. An estimate was made of the surface energy for this face of lithium hydride and the value found was reasonable when compared with semi-empirical values for the (100) surfaces of alkali halide crystals.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1972.0182</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1972-12, Vol.331 (1586), p.347-359
issn 1364-5021
0080-4630
1471-2946
2053-9169
language eng
recordid cdi_jstor_primary_78289
source JSTOR; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Coordinate systems
Crystal lattices
Crystals
Energy
Energy value
Hydrides
Lithium
Molecules
Orbitals
Surface energy
title An 'ab initio' Gaussian Orbital Calculation of the (100) Surface of Crystalline Lithium Hydride
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20'ab%20initio'%20Gaussian%20Orbital%20Calculation%20of%20the%20(100)%20Surface%20of%20Crystalline%20Lithium%20Hydride&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Erickson,%20W.%20D.&rft.date=1972-12-29&rft.volume=331&rft.issue=1586&rft.spage=347&rft.epage=359&rft.pages=347-359&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1972.0182&rft_dat=%3Cjstor_highw%3E78289%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-90b6d8c7c6166d332560963a16d07da16403dfa4f70ec0ab092f2cf216de79183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=78289&rfr_iscdi=true