Loading…
An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution
We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The...
Saved in:
Published in: | Management science 2001-08, Vol.47 (8), p.1101-1112 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3 |
container_end_page | 1112 |
container_issue | 8 |
container_start_page | 1101 |
container_title | Management science |
container_volume | 47 |
creator | Godfrey, Gregory A Powell, Warren B |
description | We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programsthe newsvendor stochastic inventory problem and two-stage distribution problems. |
doi_str_mv | 10.1287/mnsc.47.8.1101.10231 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_822596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>822596</jstor_id><sourcerecordid>822596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</originalsourceid><addsrcrecordid>eNqNkcGO0zAQhiMEEmXhCeBgcUAcNsFjJ7FzjLosrFQBBzhbTjrZuErsYKet-go8NW4Di-DEYWR5_H-_x_6T5BXQDJgU70Yb2iwXmcwAKGRAGYdHyQoKVqZFQeFxsqKUFSlUtHqaPAthRykVUpSr5EdtSb3V02wOeE1uTJi9afazcTa99YikHu6dN3M_ks55MvdIPuExHNBu4_aLd82AIzlGAVmjDc7jltzgqO02XC_tepoG0-qzYyCzI3c2wrPzJxJFf134PHnS6SHgi1_rVfLt9v3X9cd08_nD3brepG18ypy20LIyB8yRdo0uOy1Yg1jy2K6goVJUQAsmIW-4qLpOgGSAmnOtuWhEi_wqebP4Tt5932OY1WhCi8OgLbp9UFwyWbKcReHrf4Q7t_c2zqYYcJYX1UWUL6LWuxA8dmryZtT-pICqczrqnI7KhZLqnI66pBOxzYJ5nLB9YIwdnb8AB8V1hLg-xWI0glybWDLWFGvxAmCqn8do93Kx24X4tw92krGiKuMpX06NjSmO4X9HfLtQvbnvj8aj-o3HfENr_gD8JwJsxsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213245942</pqid></control><display><type>article</type><title>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Collection</source><source>Business Source Ultimate</source><source>Informs PubsOnline</source><source>ABI/INFORM Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Godfrey, Gregory A ; Powell, Warren B</creator><creatorcontrib>Godfrey, Gregory A ; Powell, Warren B</creatorcontrib><description>We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programsthe newsvendor stochastic inventory problem and two-stage distribution problems.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.47.8.1101.10231</identifier><identifier>CODEN: MNSCDI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Approximation ; Business studies ; Censored Demands ; Censorship ; Concavity ; Data smoothing ; Demand ; Distribution ; Dynamic programming ; Dynamic Programming Approximations ; Estimation ; Estimation methods ; Inventories ; Management science ; Newsvendor Problem ; Operations research ; Order quantity ; Revenue ; Stochastic models ; Stochastic Programming ; Studies ; Unit costs ; Value</subject><ispartof>Management science, 2001-08, Vol.47 (8), p.1101-1112</ispartof><rights>Copyright 2001 INFORMS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</citedby><cites>FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213245942/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213245942?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3692,11688,11906,12847,27924,27925,33223,33224,36050,36051,36060,36061,44361,44363,58238,58471,62616,74893,74895</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a47_3ay_3a2001_3ai_3a8_3ap_3a1101-1112.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Godfrey, Gregory A</creatorcontrib><creatorcontrib>Powell, Warren B</creatorcontrib><title>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</title><title>Management science</title><description>We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programsthe newsvendor stochastic inventory problem and two-stage distribution problems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Business studies</subject><subject>Censored Demands</subject><subject>Censorship</subject><subject>Concavity</subject><subject>Data smoothing</subject><subject>Demand</subject><subject>Distribution</subject><subject>Dynamic programming</subject><subject>Dynamic Programming Approximations</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Inventories</subject><subject>Management science</subject><subject>Newsvendor Problem</subject><subject>Operations research</subject><subject>Order quantity</subject><subject>Revenue</subject><subject>Stochastic models</subject><subject>Stochastic Programming</subject><subject>Studies</subject><subject>Unit costs</subject><subject>Value</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNqNkcGO0zAQhiMEEmXhCeBgcUAcNsFjJ7FzjLosrFQBBzhbTjrZuErsYKet-go8NW4Di-DEYWR5_H-_x_6T5BXQDJgU70Yb2iwXmcwAKGRAGYdHyQoKVqZFQeFxsqKUFSlUtHqaPAthRykVUpSr5EdtSb3V02wOeE1uTJi9afazcTa99YikHu6dN3M_ks55MvdIPuExHNBu4_aLd82AIzlGAVmjDc7jltzgqO02XC_tepoG0-qzYyCzI3c2wrPzJxJFf134PHnS6SHgi1_rVfLt9v3X9cd08_nD3brepG18ypy20LIyB8yRdo0uOy1Yg1jy2K6goVJUQAsmIW-4qLpOgGSAmnOtuWhEi_wqebP4Tt5932OY1WhCi8OgLbp9UFwyWbKcReHrf4Q7t_c2zqYYcJYX1UWUL6LWuxA8dmryZtT-pICqczrqnI7KhZLqnI66pBOxzYJ5nLB9YIwdnb8AB8V1hLg-xWI0glybWDLWFGvxAmCqn8do93Kx24X4tw92krGiKuMpX06NjSmO4X9HfLtQvbnvj8aj-o3HfENr_gD8JwJsxsU</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Godfrey, Gregory A</creator><creator>Powell, Warren B</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>8A3</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20010801</creationdate><title>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</title><author>Godfrey, Gregory A ; Powell, Warren B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Business studies</topic><topic>Censored Demands</topic><topic>Censorship</topic><topic>Concavity</topic><topic>Data smoothing</topic><topic>Demand</topic><topic>Distribution</topic><topic>Dynamic programming</topic><topic>Dynamic Programming Approximations</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Inventories</topic><topic>Management science</topic><topic>Newsvendor Problem</topic><topic>Operations research</topic><topic>Order quantity</topic><topic>Revenue</topic><topic>Stochastic models</topic><topic>Stochastic Programming</topic><topic>Studies</topic><topic>Unit costs</topic><topic>Value</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godfrey, Gregory A</creatorcontrib><creatorcontrib>Powell, Warren B</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godfrey, Gregory A</au><au>Powell, Warren B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</atitle><jtitle>Management science</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>47</volume><issue>8</issue><spage>1101</spage><epage>1112</epage><pages>1101-1112</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MNSCDI</coden><abstract>We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programsthe newsvendor stochastic inventory problem and two-stage distribution problems.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mnsc.47.8.1101.10231</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-1909 |
ispartof | Management science, 2001-08, Vol.47 (8), p.1101-1112 |
issn | 0025-1909 1526-5501 |
language | eng |
recordid | cdi_jstor_primary_822596 |
source | International Bibliography of the Social Sciences (IBSS); ABI/INFORM Collection; Business Source Ultimate; Informs PubsOnline; ABI/INFORM Archive; JSTOR Archival Journals and Primary Sources Collection |
subjects | Algorithms Approximation Business studies Censored Demands Censorship Concavity Data smoothing Demand Distribution Dynamic programming Dynamic Programming Approximations Estimation Estimation methods Inventories Management science Newsvendor Problem Operations research Order quantity Revenue Stochastic models Stochastic Programming Studies Unit costs Value |
title | An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive,%20Distribution-Free%20Algorithm%20for%20the%20Newsvendor%20Problem%20with%20Censored%20Demands,%20with%20Applications%20to%20Inventory%20and%20Distribution&rft.jtitle=Management%20science&rft.au=Godfrey,%20Gregory%20A&rft.date=2001-08-01&rft.volume=47&rft.issue=8&rft.spage=1101&rft.epage=1112&rft.pages=1101-1112&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MNSCDI&rft_id=info:doi/10.1287/mnsc.47.8.1101.10231&rft_dat=%3Cjstor_cross%3E822596%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213245942&rft_id=info:pmid/&rft_jstor_id=822596&rfr_iscdi=true |