Loading…

An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution

We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The...

Full description

Saved in:
Bibliographic Details
Published in:Management science 2001-08, Vol.47 (8), p.1101-1112
Main Authors: Godfrey, Gregory A, Powell, Warren B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3
cites cdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3
container_end_page 1112
container_issue 8
container_start_page 1101
container_title Management science
container_volume 47
creator Godfrey, Gregory A
Powell, Warren B
description We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programs—the newsvendor stochastic inventory problem and two-stage distribution problems.
doi_str_mv 10.1287/mnsc.47.8.1101.10231
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_822596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>822596</jstor_id><sourcerecordid>822596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</originalsourceid><addsrcrecordid>eNqNkcGO0zAQhiMEEmXhCeBgcUAcNsFjJ7FzjLosrFQBBzhbTjrZuErsYKet-go8NW4Di-DEYWR5_H-_x_6T5BXQDJgU70Yb2iwXmcwAKGRAGYdHyQoKVqZFQeFxsqKUFSlUtHqaPAthRykVUpSr5EdtSb3V02wOeE1uTJi9afazcTa99YikHu6dN3M_ks55MvdIPuExHNBu4_aLd82AIzlGAVmjDc7jltzgqO02XC_tepoG0-qzYyCzI3c2wrPzJxJFf134PHnS6SHgi1_rVfLt9v3X9cd08_nD3brepG18ypy20LIyB8yRdo0uOy1Yg1jy2K6goVJUQAsmIW-4qLpOgGSAmnOtuWhEi_wqebP4Tt5932OY1WhCi8OgLbp9UFwyWbKcReHrf4Q7t_c2zqYYcJYX1UWUL6LWuxA8dmryZtT-pICqczrqnI7KhZLqnI66pBOxzYJ5nLB9YIwdnb8AB8V1hLg-xWI0glybWDLWFGvxAmCqn8do93Kx24X4tw92krGiKuMpX06NjSmO4X9HfLtQvbnvj8aj-o3HfENr_gD8JwJsxsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213245942</pqid></control><display><type>article</type><title>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Collection</source><source>Business Source Ultimate</source><source>Informs PubsOnline</source><source>ABI/INFORM Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Godfrey, Gregory A ; Powell, Warren B</creator><creatorcontrib>Godfrey, Gregory A ; Powell, Warren B</creatorcontrib><description>We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programs—the newsvendor stochastic inventory problem and two-stage distribution problems.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.47.8.1101.10231</identifier><identifier>CODEN: MNSCDI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Approximation ; Business studies ; Censored Demands ; Censorship ; Concavity ; Data smoothing ; Demand ; Distribution ; Dynamic programming ; Dynamic Programming Approximations ; Estimation ; Estimation methods ; Inventories ; Management science ; Newsvendor Problem ; Operations research ; Order quantity ; Revenue ; Stochastic models ; Stochastic Programming ; Studies ; Unit costs ; Value</subject><ispartof>Management science, 2001-08, Vol.47 (8), p.1101-1112</ispartof><rights>Copyright 2001 INFORMS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</citedby><cites>FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213245942/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213245942?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3692,11688,11906,12847,27924,27925,33223,33224,36050,36051,36060,36061,44361,44363,58238,58471,62616,74893,74895</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a47_3ay_3a2001_3ai_3a8_3ap_3a1101-1112.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Godfrey, Gregory A</creatorcontrib><creatorcontrib>Powell, Warren B</creatorcontrib><title>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</title><title>Management science</title><description>We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programs—the newsvendor stochastic inventory problem and two-stage distribution problems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Business studies</subject><subject>Censored Demands</subject><subject>Censorship</subject><subject>Concavity</subject><subject>Data smoothing</subject><subject>Demand</subject><subject>Distribution</subject><subject>Dynamic programming</subject><subject>Dynamic Programming Approximations</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Inventories</subject><subject>Management science</subject><subject>Newsvendor Problem</subject><subject>Operations research</subject><subject>Order quantity</subject><subject>Revenue</subject><subject>Stochastic models</subject><subject>Stochastic Programming</subject><subject>Studies</subject><subject>Unit costs</subject><subject>Value</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNqNkcGO0zAQhiMEEmXhCeBgcUAcNsFjJ7FzjLosrFQBBzhbTjrZuErsYKet-go8NW4Di-DEYWR5_H-_x_6T5BXQDJgU70Yb2iwXmcwAKGRAGYdHyQoKVqZFQeFxsqKUFSlUtHqaPAthRykVUpSr5EdtSb3V02wOeE1uTJi9afazcTa99YikHu6dN3M_ks55MvdIPuExHNBu4_aLd82AIzlGAVmjDc7jltzgqO02XC_tepoG0-qzYyCzI3c2wrPzJxJFf134PHnS6SHgi1_rVfLt9v3X9cd08_nD3brepG18ypy20LIyB8yRdo0uOy1Yg1jy2K6goVJUQAsmIW-4qLpOgGSAmnOtuWhEi_wqebP4Tt5932OY1WhCi8OgLbp9UFwyWbKcReHrf4Q7t_c2zqYYcJYX1UWUL6LWuxA8dmryZtT-pICqczrqnI7KhZLqnI66pBOxzYJ5nLB9YIwdnb8AB8V1hLg-xWI0glybWDLWFGvxAmCqn8do93Kx24X4tw92krGiKuMpX06NjSmO4X9HfLtQvbnvj8aj-o3HfENr_gD8JwJsxsU</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Godfrey, Gregory A</creator><creator>Powell, Warren B</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>8A3</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20010801</creationdate><title>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</title><author>Godfrey, Gregory A ; Powell, Warren B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Business studies</topic><topic>Censored Demands</topic><topic>Censorship</topic><topic>Concavity</topic><topic>Data smoothing</topic><topic>Demand</topic><topic>Distribution</topic><topic>Dynamic programming</topic><topic>Dynamic Programming Approximations</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Inventories</topic><topic>Management science</topic><topic>Newsvendor Problem</topic><topic>Operations research</topic><topic>Order quantity</topic><topic>Revenue</topic><topic>Stochastic models</topic><topic>Stochastic Programming</topic><topic>Studies</topic><topic>Unit costs</topic><topic>Value</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godfrey, Gregory A</creatorcontrib><creatorcontrib>Powell, Warren B</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godfrey, Gregory A</au><au>Powell, Warren B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution</atitle><jtitle>Management science</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>47</volume><issue>8</issue><spage>1101</spage><epage>1112</epage><pages>1101-1112</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MNSCDI</coden><abstract>We consider the problem of optimizing inventories for problems where the demand distribution is unknown, and where it does not necessarily follow a standard form such as the normal. We address problems where the process of deciding the inventory, and then realizing the demand, occurs repeatedly. The only information we use is the amount of inventory left over. Rather than attempting to estimate the demand distribution, we directly estimate the value function using a technique called the Concave, Adaptive Value Estimation (CAVE) algorithm. CAVE constructs a sequence of concave piecewise linear approximations using sample gradients of the recourse function at different points in the domain. Since it is a sampling-based method, CAVE does not require knowledge of the underlying sample distribution. The result is a nonlinear approximation that is more responsive than traditional linear stochastic quasi-gradient methods and more flexible than analytical techniques that require distribution information. In addition, we demonstrate near-optimal behavior of the CAVE approximation in experiments involving two different types of stochastic programs—the newsvendor stochastic inventory problem and two-stage distribution problems.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mnsc.47.8.1101.10231</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-1909
ispartof Management science, 2001-08, Vol.47 (8), p.1101-1112
issn 0025-1909
1526-5501
language eng
recordid cdi_jstor_primary_822596
source International Bibliography of the Social Sciences (IBSS); ABI/INFORM Collection; Business Source Ultimate; Informs PubsOnline; ABI/INFORM Archive; JSTOR Archival Journals and Primary Sources Collection
subjects Algorithms
Approximation
Business studies
Censored Demands
Censorship
Concavity
Data smoothing
Demand
Distribution
Dynamic programming
Dynamic Programming Approximations
Estimation
Estimation methods
Inventories
Management science
Newsvendor Problem
Operations research
Order quantity
Revenue
Stochastic models
Stochastic Programming
Studies
Unit costs
Value
title An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive,%20Distribution-Free%20Algorithm%20for%20the%20Newsvendor%20Problem%20with%20Censored%20Demands,%20with%20Applications%20to%20Inventory%20and%20Distribution&rft.jtitle=Management%20science&rft.au=Godfrey,%20Gregory%20A&rft.date=2001-08-01&rft.volume=47&rft.issue=8&rft.spage=1101&rft.epage=1112&rft.pages=1101-1112&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MNSCDI&rft_id=info:doi/10.1287/mnsc.47.8.1101.10231&rft_dat=%3Cjstor_cross%3E822596%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-c1c2641e4e0fba6fa72bee631c291b08791052814b379ff71821ea33aa37b7ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213245942&rft_id=info:pmid/&rft_jstor_id=822596&rfr_iscdi=true