Loading…
NO CRITICAL NONLINEAR DIFFUSION IN 1D QUASILINEAR FULLY PARABOLIC CHEMOTAXIS SYSTEM
This paper deals with the fully parabolic 1d chemotaxis system with diffusion 1/(1 + u). We prove that the above mentioned nonlinearity, despite being a natural candidate, is not critical. It means that for such a diffusion any initial condition, independently on the magnitude of mass, generates the...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2018-06, Vol.146 (6), p.2529-2540 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2540 |
container_issue | 6 |
container_start_page | 2529 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 146 |
creator | CIÉSLAK, TOMASZ FUJIE, KENTAROU |
description | This paper deals with the fully parabolic 1d chemotaxis system with diffusion 1/(1 + u). We prove that the above mentioned nonlinearity, despite being a natural candidate, is not critical. It means that for such a diffusion any initial condition, independently on the magnitude of mass, generates the global-in-time solution. In view of our theorem one sees that the one-dimensional Keller-Segel system is essentially different from its higher-dimensional versions. In order to prove our theorem we establish a new Lyapunov-like functional associated to the system. The information we gain from our new functional (together with some estimates based on the well-known classical Lyapunov functional) turns out to be rich enough to establish global existence for the initial-boundary value problem. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_90020437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90020437</jstor_id><sourcerecordid>90020437</sourcerecordid><originalsourceid>FETCH-jstor_primary_900204373</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GcL8_BWcgzxDPJ0dfRT8_P18PP1cHYMUXDzd3EKDPf39FDz9FAw_zJ22WCEw1DHYEyrtFurjE6kQ4Bjk6OTv4-ms4Ozh6usf4hjhGawQHBkc4urLw8CalphTnMoLpbkZZN1cQ5w9dLOKS_KL4guKMnMTiyrjLYGuMjAxNjcmJA8ArYM3Sw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NO CRITICAL NONLINEAR DIFFUSION IN 1D QUASILINEAR FULLY PARABOLIC CHEMOTAXIS SYSTEM</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR</source><creator>CIÉSLAK, TOMASZ ; FUJIE, KENTAROU</creator><creatorcontrib>CIÉSLAK, TOMASZ ; FUJIE, KENTAROU</creatorcontrib><description>This paper deals with the fully parabolic 1d chemotaxis system with diffusion 1/(1 + u). We prove that the above mentioned nonlinearity, despite being a natural candidate, is not critical. It means that for such a diffusion any initial condition, independently on the magnitude of mass, generates the global-in-time solution. In view of our theorem one sees that the one-dimensional Keller-Segel system is essentially different from its higher-dimensional versions. In order to prove our theorem we establish a new Lyapunov-like functional associated to the system. The information we gain from our new functional (together with some estimates based on the well-known classical Lyapunov functional) turns out to be rich enough to establish global existence for the initial-boundary value problem.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2018-06, Vol.146 (6), p.2529-2540</ispartof><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90020437$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90020437$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58217,58450</link.rule.ids></links><search><creatorcontrib>CIÉSLAK, TOMASZ</creatorcontrib><creatorcontrib>FUJIE, KENTAROU</creatorcontrib><title>NO CRITICAL NONLINEAR DIFFUSION IN 1D QUASILINEAR FULLY PARABOLIC CHEMOTAXIS SYSTEM</title><title>Proceedings of the American Mathematical Society</title><description>This paper deals with the fully parabolic 1d chemotaxis system with diffusion 1/(1 + u). We prove that the above mentioned nonlinearity, despite being a natural candidate, is not critical. It means that for such a diffusion any initial condition, independently on the magnitude of mass, generates the global-in-time solution. In view of our theorem one sees that the one-dimensional Keller-Segel system is essentially different from its higher-dimensional versions. In order to prove our theorem we establish a new Lyapunov-like functional associated to the system. The information we gain from our new functional (together with some estimates based on the well-known classical Lyapunov functional) turns out to be rich enough to establish global existence for the initial-boundary value problem.</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GcL8_BWcgzxDPJ0dfRT8_P18PP1cHYMUXDzd3EKDPf39FDz9FAw_zJ22WCEw1DHYEyrtFurjE6kQ4Bjk6OTv4-ms4Ozh6usf4hjhGawQHBkc4urLw8CalphTnMoLpbkZZN1cQ5w9dLOKS_KL4guKMnMTiyrjLYGuMjAxNjcmJA8ArYM3Sw</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>CIÉSLAK, TOMASZ</creator><creator>FUJIE, KENTAROU</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20180601</creationdate><title>NO CRITICAL NONLINEAR DIFFUSION IN 1D QUASILINEAR FULLY PARABOLIC CHEMOTAXIS SYSTEM</title><author>CIÉSLAK, TOMASZ ; FUJIE, KENTAROU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_900204373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CIÉSLAK, TOMASZ</creatorcontrib><creatorcontrib>FUJIE, KENTAROU</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CIÉSLAK, TOMASZ</au><au>FUJIE, KENTAROU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NO CRITICAL NONLINEAR DIFFUSION IN 1D QUASILINEAR FULLY PARABOLIC CHEMOTAXIS SYSTEM</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>146</volume><issue>6</issue><spage>2529</spage><epage>2540</epage><pages>2529-2540</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>This paper deals with the fully parabolic 1d chemotaxis system with diffusion 1/(1 + u). We prove that the above mentioned nonlinearity, despite being a natural candidate, is not critical. It means that for such a diffusion any initial condition, independently on the magnitude of mass, generates the global-in-time solution. In view of our theorem one sees that the one-dimensional Keller-Segel system is essentially different from its higher-dimensional versions. In order to prove our theorem we establish a new Lyapunov-like functional associated to the system. The information we gain from our new functional (together with some estimates based on the well-known classical Lyapunov functional) turns out to be rich enough to establish global existence for the initial-boundary value problem.</abstract><pub>American Mathematical Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2018-06, Vol.146 (6), p.2529-2540 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_jstor_primary_90020437 |
source | American Mathematical Society Publications - Open Access; JSTOR |
subjects | B. ANALYSIS |
title | NO CRITICAL NONLINEAR DIFFUSION IN 1D QUASILINEAR FULLY PARABOLIC CHEMOTAXIS SYSTEM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NO%20CRITICAL%20NONLINEAR%20DIFFUSION%20IN%201D%20QUASILINEAR%20FULLY%20PARABOLIC%20CHEMOTAXIS%20SYSTEM&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=CI%C3%89SLAK,%20TOMASZ&rft.date=2018-06-01&rft.volume=146&rft.issue=6&rft.spage=2529&rft.epage=2540&rft.pages=2529-2540&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/&rft_dat=%3Cjstor%3E90020437%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_900204373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90020437&rfr_iscdi=true |