Loading…

On the Statistical Interpretation of Fatigue Tests

Progressive damage under repeated load cycles which leads to spreading, visible fatigue cracks and finally to fracture in both metals and non-metals is a highly structure-sensitive process, the large-scale manifestations of which depend primarily on happenings on the submicroscopic and microscopic s...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1953-02, Vol.216 (1126), p.309-332
Main Authors: Freudenthal, A. M., Gumbel, E. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-4388900275f50b2bda20fb93db6631e4e1e4188f30ad715727133c111a2d59003
cites cdi_FETCH-LOGICAL-c476t-4388900275f50b2bda20fb93db6631e4e1e4188f30ad715727133c111a2d59003
container_end_page 332
container_issue 1126
container_start_page 309
container_title Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences
container_volume 216
creator Freudenthal, A. M.
Gumbel, E. J.
description Progressive damage under repeated load cycles which leads to spreading, visible fatigue cracks and finally to fracture in both metals and non-metals is a highly structure-sensitive process, the large-scale manifestations of which depend primarily on happenings on the submicroscopic and microscopic scale. This produces a considerable scatter in the results of fatigue tests performed under assumedly identical conditions. Thus, if n specimens are subjected to a sequence of stress cycles of the same amplitude S, they break at varying numbers of cycles; these numbers N taken in decreasing order, and the frequencies of survival at each number, determine, for each stress level S, a characteristic cumulative frequency distribution l(N)g, the ‘survivorship function’. By formulating the phenomenon of consecutive fatigue fractures of the weakest within a finite (large) set of specimens as a problem of extreme values, the statistical theory of extreme values can be applied to the interpretation of the observed frequencies of survival at any stress amplitude. If, in first approximation, it is assumed that the probability of survival reaches unity only for N = 0 (no ‘sensitivity threshold’ in N), the survivorship functions are reproduced by the ‘third asymptotic probability function of smallest values’, which is represented on extremal probability paper by a straight-line relation between a reduced statistical variate y and log10N. Methods are presented for the computation of the two parameters of the survivorship function l(N)g from a set of fatigue data. The fit between the computed theoretical straight lines and the test results is satisfactory for fatigue tests of copper, aluminium and a high-strength structural aluminium alloy.
doi_str_mv 10.1098/rspa.1953.0024
format article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_99177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>99177</jstor_id><sourcerecordid>99177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-4388900275f50b2bda20fb93db6631e4e1e4188f30ad715727133c111a2d59003</originalsourceid><addsrcrecordid>eNp9Ul1P2zAUjRCTBmyve-ApfyDF1x-x_TRBRwdSNbbBeL1yE4e665LIdhndr5_TTEgVGg-W78c5954jO8s-AJkA0erMh95MQAs2IYTyg-wIuISCal4eppiVvBCEwtvsOIQVIUQLJY8yetPmcWnz22iiC9FVZp1ft9H63tuh1LV51-SzFD1sbH5nQwzvsjeNWQf7_t99kv2YXd5Nr4r5zefr6fm8qLgsY8GZUjopkaIRZEEXtaGkWWhWL8qSgeU2HVCqYcTUEoSkEhirAMDQWiQiO8km49zKdyF422Dv3S_jtwgEB8c4OMbBMQ6OEyGMBN9tk7CucjZucdVtfJtS_H779Rw0U48USgdASySKAZFUEI1_XL8bNwAwAdCFsLG4g-2vebmVvbb1v1pPR9YqxM4_O9MapEzNYmymF7FPz03jf2IpmRR4rzjyiy-z--n8E35LeBjxS_ew_O28xT0tKel9MDtbO0OM6MT5-CpnkFt16Se0cY-IzWa9xr5u2F9PJb6v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Statistical Interpretation of Fatigue Tests</title><source>JSTOR Archival Journals</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Freudenthal, A. M. ; Gumbel, E. J.</creator><creatorcontrib>Freudenthal, A. M. ; Gumbel, E. J.</creatorcontrib><description>Progressive damage under repeated load cycles which leads to spreading, visible fatigue cracks and finally to fracture in both metals and non-metals is a highly structure-sensitive process, the large-scale manifestations of which depend primarily on happenings on the submicroscopic and microscopic scale. This produces a considerable scatter in the results of fatigue tests performed under assumedly identical conditions. Thus, if n specimens are subjected to a sequence of stress cycles of the same amplitude S, they break at varying numbers of cycles; these numbers N taken in decreasing order, and the frequencies of survival at each number, determine, for each stress level S, a characteristic cumulative frequency distribution l(N)g, the ‘survivorship function’. By formulating the phenomenon of consecutive fatigue fractures of the weakest within a finite (large) set of specimens as a problem of extreme values, the statistical theory of extreme values can be applied to the interpretation of the observed frequencies of survival at any stress amplitude. If, in first approximation, it is assumed that the probability of survival reaches unity only for N = 0 (no ‘sensitivity threshold’ in N), the survivorship functions are reproduced by the ‘third asymptotic probability function of smallest values’, which is represented on extremal probability paper by a straight-line relation between a reduced statistical variate y and log10N. Methods are presented for the computation of the two parameters of the survivorship function l(N)g from a set of fatigue data. The fit between the computed theoretical straight lines and the test results is satisfactory for fatigue tests of copper, aluminium and a high-strength structural aluminium alloy.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1953.0024</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Fatigue ; Fatigue life ; Fatigue tests ; Mathematical functions ; Mathematical independent variables ; Probabilities ; Specimens ; Standard deviation ; Statistical interpretations ; Stress cycles</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1953-02, Vol.216 (1126), p.309-332</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-4388900275f50b2bda20fb93db6631e4e1e4188f30ad715727133c111a2d59003</citedby><cites>FETCH-LOGICAL-c476t-4388900275f50b2bda20fb93db6631e4e1e4188f30ad715727133c111a2d59003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/99177$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/99177$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Freudenthal, A. M.</creatorcontrib><creatorcontrib>Gumbel, E. J.</creatorcontrib><title>On the Statistical Interpretation of Fatigue Tests</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>Progressive damage under repeated load cycles which leads to spreading, visible fatigue cracks and finally to fracture in both metals and non-metals is a highly structure-sensitive process, the large-scale manifestations of which depend primarily on happenings on the submicroscopic and microscopic scale. This produces a considerable scatter in the results of fatigue tests performed under assumedly identical conditions. Thus, if n specimens are subjected to a sequence of stress cycles of the same amplitude S, they break at varying numbers of cycles; these numbers N taken in decreasing order, and the frequencies of survival at each number, determine, for each stress level S, a characteristic cumulative frequency distribution l(N)g, the ‘survivorship function’. By formulating the phenomenon of consecutive fatigue fractures of the weakest within a finite (large) set of specimens as a problem of extreme values, the statistical theory of extreme values can be applied to the interpretation of the observed frequencies of survival at any stress amplitude. If, in first approximation, it is assumed that the probability of survival reaches unity only for N = 0 (no ‘sensitivity threshold’ in N), the survivorship functions are reproduced by the ‘third asymptotic probability function of smallest values’, which is represented on extremal probability paper by a straight-line relation between a reduced statistical variate y and log10N. Methods are presented for the computation of the two parameters of the survivorship function l(N)g from a set of fatigue data. The fit between the computed theoretical straight lines and the test results is satisfactory for fatigue tests of copper, aluminium and a high-strength structural aluminium alloy.</description><subject>Fatigue</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Probabilities</subject><subject>Specimens</subject><subject>Standard deviation</subject><subject>Statistical interpretations</subject><subject>Stress cycles</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1953</creationdate><recordtype>article</recordtype><recordid>eNp9Ul1P2zAUjRCTBmyve-ApfyDF1x-x_TRBRwdSNbbBeL1yE4e665LIdhndr5_TTEgVGg-W78c5954jO8s-AJkA0erMh95MQAs2IYTyg-wIuISCal4eppiVvBCEwtvsOIQVIUQLJY8yetPmcWnz22iiC9FVZp1ft9H63tuh1LV51-SzFD1sbH5nQwzvsjeNWQf7_t99kv2YXd5Nr4r5zefr6fm8qLgsY8GZUjopkaIRZEEXtaGkWWhWL8qSgeU2HVCqYcTUEoSkEhirAMDQWiQiO8km49zKdyF422Dv3S_jtwgEB8c4OMbBMQ6OEyGMBN9tk7CucjZucdVtfJtS_H779Rw0U48USgdASySKAZFUEI1_XL8bNwAwAdCFsLG4g-2vebmVvbb1v1pPR9YqxM4_O9MapEzNYmymF7FPz03jf2IpmRR4rzjyiy-z--n8E35LeBjxS_ew_O28xT0tKel9MDtbO0OM6MT5-CpnkFt16Se0cY-IzWa9xr5u2F9PJb6v</recordid><startdate>19530210</startdate><enddate>19530210</enddate><creator>Freudenthal, A. M.</creator><creator>Gumbel, E. J.</creator><general>The Royal Society</general><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19530210</creationdate><title>On the Statistical Interpretation of Fatigue Tests</title><author>Freudenthal, A. M. ; Gumbel, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-4388900275f50b2bda20fb93db6631e4e1e4188f30ad715727133c111a2d59003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1953</creationdate><topic>Fatigue</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Probabilities</topic><topic>Specimens</topic><topic>Standard deviation</topic><topic>Statistical interpretations</topic><topic>Stress cycles</topic><toplevel>online_resources</toplevel><creatorcontrib>Freudenthal, A. M.</creatorcontrib><creatorcontrib>Gumbel, E. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freudenthal, A. M.</au><au>Gumbel, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Statistical Interpretation of Fatigue Tests</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1953-02-10</date><risdate>1953</risdate><volume>216</volume><issue>1126</issue><spage>309</spage><epage>332</epage><pages>309-332</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><abstract>Progressive damage under repeated load cycles which leads to spreading, visible fatigue cracks and finally to fracture in both metals and non-metals is a highly structure-sensitive process, the large-scale manifestations of which depend primarily on happenings on the submicroscopic and microscopic scale. This produces a considerable scatter in the results of fatigue tests performed under assumedly identical conditions. Thus, if n specimens are subjected to a sequence of stress cycles of the same amplitude S, they break at varying numbers of cycles; these numbers N taken in decreasing order, and the frequencies of survival at each number, determine, for each stress level S, a characteristic cumulative frequency distribution l(N)g, the ‘survivorship function’. By formulating the phenomenon of consecutive fatigue fractures of the weakest within a finite (large) set of specimens as a problem of extreme values, the statistical theory of extreme values can be applied to the interpretation of the observed frequencies of survival at any stress amplitude. If, in first approximation, it is assumed that the probability of survival reaches unity only for N = 0 (no ‘sensitivity threshold’ in N), the survivorship functions are reproduced by the ‘third asymptotic probability function of smallest values’, which is represented on extremal probability paper by a straight-line relation between a reduced statistical variate y and log10N. Methods are presented for the computation of the two parameters of the survivorship function l(N)g from a set of fatigue data. The fit between the computed theoretical straight lines and the test results is satisfactory for fatigue tests of copper, aluminium and a high-strength structural aluminium alloy.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1953.0024</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1953-02, Vol.216 (1126), p.309-332
issn 1364-5021
0080-4630
1471-2946
2053-9169
language eng
recordid cdi_jstor_primary_99177
source JSTOR Archival Journals; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Fatigue
Fatigue life
Fatigue tests
Mathematical functions
Mathematical independent variables
Probabilities
Specimens
Standard deviation
Statistical interpretations
Stress cycles
title On the Statistical Interpretation of Fatigue Tests
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Statistical%20Interpretation%20of%20Fatigue%20Tests&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Freudenthal,%20A.%20M.&rft.date=1953-02-10&rft.volume=216&rft.issue=1126&rft.spage=309&rft.epage=332&rft.pages=309-332&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1953.0024&rft_dat=%3Cjstor_royal%3E99177%3C/jstor_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-4388900275f50b2bda20fb93db6631e4e1e4188f30ad715727133c111a2d59003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=99177&rfr_iscdi=true