Loading…

BELTRAMI EQUATIONS WITH COEFFICIENT IN THE FRACTIONAL SOBOLEV SPACE

In this paper, we look at quasiconformal solutions φ: C → C of Beltrami equations ∂ z ̄ φ ( z ) = μ ( z ) ∂ z φ ( z ) , where μ ∈ L∞(C) is compactly supported on D, and ‖μ‖∞ < 1 and belongs to the fractional Sobolev space W α , 2 α ( C ) . Our main result states that log ∂ z φ ∈ W α , 2 α ( C )...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2017-01, Vol.145 (1), p.139-149
Main Authors: BAISÓN, ANTONIO L., CLOP, ALBERT, OROBITG, JOAN
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 149
container_issue 1
container_start_page 139
container_title Proceedings of the American Mathematical Society
container_volume 145
creator BAISÓN, ANTONIO L.
CLOP, ALBERT
OROBITG, JOAN
description In this paper, we look at quasiconformal solutions φ: C → C of Beltrami equations ∂ z ̄ φ ( z ) = μ ( z ) ∂ z φ ( z ) , where μ ∈ L∞(C) is compactly supported on D, and ‖μ‖∞ < 1 and belongs to the fractional Sobolev space W α , 2 α ( C ) . Our main result states that log ∂ z φ ∈ W α , 2 α ( C ) whenever α ≥ 1 2 . Our method relies on an n-dimensional result, which asserts the compactness of the commutator [ b , ( − Δ ) β 2 ] : L n p n − β p ( R n ) → L p ( R n ) between the fractional laplacian ( − Δ ) β 2 and any symbol b ∈ W β , n β ( R n ) , provided that 1 < p < n β .
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_procamermathsoci_145_1_139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.145.1.139</jstor_id><sourcerecordid>procamermathsoci.145.1.139</sourcerecordid><originalsourceid>FETCH-jstor_primary_procamermathsoci_145_1_1393</originalsourceid><addsrcrecordid>eNqVi9sKgjAAQEcUZJd_2A9Im5q5xzk2HJiWrnqUIUZKYmy-9PcZ9AM9HQ6cMwMORlHkhpEXzoGDEPJcQnyyBCtru0kxCQ4OYDFPVUGPEvLzhSqZZyW8SZVAlnMhJJM8U1BmUCUcioKyb0FTWOZxnvIrLE-U8Q1Y3PXTNtsf12AnuGKJ29lxMNXLtL0274lDrfvG9Hp82KFuKxzsK1xhn_j_Hx-cMj-n</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BELTRAMI EQUATIONS WITH COEFFICIENT IN THE FRACTIONAL SOBOLEV SPACE</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR</source><creator>BAISÓN, ANTONIO L. ; CLOP, ALBERT ; OROBITG, JOAN</creator><creatorcontrib>BAISÓN, ANTONIO L. ; CLOP, ALBERT ; OROBITG, JOAN</creatorcontrib><description>In this paper, we look at quasiconformal solutions φ: C → C of Beltrami equations ∂ z ̄ φ ( z ) = μ ( z ) ∂ z φ ( z ) , where μ ∈ L∞(C) is compactly supported on D, and ‖μ‖∞ &lt; 1 and belongs to the fractional Sobolev space W α , 2 α ( C ) . Our main result states that log ∂ z φ ∈ W α , 2 α ( C ) whenever α ≥ 1 2 . Our method relies on an n-dimensional result, which asserts the compactness of the commutator [ b , ( − Δ ) β 2 ] : L n p n − β p ( R n ) → L p ( R n ) between the fractional laplacian ( − Δ ) β 2 and any symbol b ∈ W β , n β ( R n ) , provided that 1 &lt; p &lt; n β .</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2017-01, Vol.145 (1), p.139-149</ispartof><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/procamermathsoci.145.1.139$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/procamermathsoci.145.1.139$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>BAISÓN, ANTONIO L.</creatorcontrib><creatorcontrib>CLOP, ALBERT</creatorcontrib><creatorcontrib>OROBITG, JOAN</creatorcontrib><title>BELTRAMI EQUATIONS WITH COEFFICIENT IN THE FRACTIONAL SOBOLEV SPACE</title><title>Proceedings of the American Mathematical Society</title><description>In this paper, we look at quasiconformal solutions φ: C → C of Beltrami equations ∂ z ̄ φ ( z ) = μ ( z ) ∂ z φ ( z ) , where μ ∈ L∞(C) is compactly supported on D, and ‖μ‖∞ &lt; 1 and belongs to the fractional Sobolev space W α , 2 α ( C ) . Our main result states that log ∂ z φ ∈ W α , 2 α ( C ) whenever α ≥ 1 2 . Our method relies on an n-dimensional result, which asserts the compactness of the commutator [ b , ( − Δ ) β 2 ] : L n p n − β p ( R n ) → L p ( R n ) between the fractional laplacian ( − Δ ) β 2 and any symbol b ∈ W β , n β ( R n ) , provided that 1 &lt; p &lt; n β .</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVi9sKgjAAQEcUZJd_2A9Im5q5xzk2HJiWrnqUIUZKYmy-9PcZ9AM9HQ6cMwMORlHkhpEXzoGDEPJcQnyyBCtru0kxCQ4OYDFPVUGPEvLzhSqZZyW8SZVAlnMhJJM8U1BmUCUcioKyb0FTWOZxnvIrLE-U8Q1Y3PXTNtsf12AnuGKJ29lxMNXLtL0274lDrfvG9Hp82KFuKxzsK1xhn_j_Hx-cMj-n</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>BAISÓN, ANTONIO L.</creator><creator>CLOP, ALBERT</creator><creator>OROBITG, JOAN</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20170101</creationdate><title>BELTRAMI EQUATIONS WITH COEFFICIENT IN THE FRACTIONAL SOBOLEV SPACE</title><author>BAISÓN, ANTONIO L. ; CLOP, ALBERT ; OROBITG, JOAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_procamermathsoci_145_1_1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAISÓN, ANTONIO L.</creatorcontrib><creatorcontrib>CLOP, ALBERT</creatorcontrib><creatorcontrib>OROBITG, JOAN</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAISÓN, ANTONIO L.</au><au>CLOP, ALBERT</au><au>OROBITG, JOAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BELTRAMI EQUATIONS WITH COEFFICIENT IN THE FRACTIONAL SOBOLEV SPACE</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>145</volume><issue>1</issue><spage>139</spage><epage>149</epage><pages>139-149</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>In this paper, we look at quasiconformal solutions φ: C → C of Beltrami equations ∂ z ̄ φ ( z ) = μ ( z ) ∂ z φ ( z ) , where μ ∈ L∞(C) is compactly supported on D, and ‖μ‖∞ &lt; 1 and belongs to the fractional Sobolev space W α , 2 α ( C ) . Our main result states that log ∂ z φ ∈ W α , 2 α ( C ) whenever α ≥ 1 2 . Our method relies on an n-dimensional result, which asserts the compactness of the commutator [ b , ( − Δ ) β 2 ] : L n p n − β p ( R n ) → L p ( R n ) between the fractional laplacian ( − Δ ) β 2 and any symbol b ∈ W β , n β ( R n ) , provided that 1 &lt; p &lt; n β .</abstract><pub>American Mathematical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2017-01, Vol.145 (1), p.139-149
issn 0002-9939
1088-6826
language eng
recordid cdi_jstor_primary_procamermathsoci_145_1_139
source American Mathematical Society Publications (Freely Accessible); JSTOR
subjects B. ANALYSIS
title BELTRAMI EQUATIONS WITH COEFFICIENT IN THE FRACTIONAL SOBOLEV SPACE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BELTRAMI%20EQUATIONS%20WITH%20COEFFICIENT%20IN%20THE%20FRACTIONAL%20SOBOLEV%20SPACE&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=BAIS%C3%93N,%20ANTONIO%20L.&rft.date=2017-01-01&rft.volume=145&rft.issue=1&rft.spage=139&rft.epage=149&rft.pages=139-149&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/&rft_dat=%3Cjstor%3Eprocamermathsoci.145.1.139%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_procamermathsoci_145_1_1393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.145.1.139&rfr_iscdi=true