Loading…

New Report of a Different Clinical Presentation of CD151 Splicing Mutation (c.351+2T>C): Could TSPAN11 be Considered as a Potential Modifier Gene for CD151?

CD151, a member of the tetraspanin family, is essential for normal development of skin and kidney. To date, only 2 pathogenic variants of the CD151 gene have been identified in a related disorder with recessive inheritance. Here, in the third study of CD151 mutations, we report 3 affected siblings p...

Full description

Saved in:
Bibliographic Details
Published in:Molecular syndromology 2022-05, Vol.13 (3), p.212-220
Main Authors: Rahmani, Nasim, Talebi, Saeed, Hoseini, Rozita, Asghari Kollahi, Neda, Shojaei, Azadeh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CD151, a member of the tetraspanin family, is essential for normal development of skin and kidney. To date, only 2 pathogenic variants of the CD151 gene have been identified in a related disorder with recessive inheritance. Here, in the third study of CD151 mutations, we report 3 affected siblings presenting variable degrees of renal and dermal symptoms. Whole exome sequencing (WES) was performed on the proband, followed by data analysis and in silico assessments. Confirmation of the mutation in the other patients were carried out using Sanger sequencing. The consequence of the CD151 mutation was investigated by RNA extraction and Sanger sequencing of PCR products from cDNA. Multiple computational tools were applied for protein alignment, homology modeling, and molecular interaction analysis. WES revealed the variant c.351+2T>C, NM_139029 (GRCh37) in CD151, and this was confirmed by Sanger sequencing in all patients. This variant is the result of a substitution of nucleotide T with C that changes the position +2 of the donor splice site in intron 5, leading to total loss of exon 5 from the transcript. The mentioned variant was not found in population allele frequency databases, and prediction tools concurred in its damaging effect on the protein. Based on the criteria from ACMG guidelines, this variant is pathogenic. Interestingly, in terms of clinical findings, symptoms and severity of the disease in the patients in this study were different compared to the previous report of the mutation and the disease. In addition, in silico analysis in this study appears to suggest a candidate protein, Tetraspanin-11 (TSPAN11), that could partially modify CD151 functions. This study supports the pathogenic effect of the CD151 variant c.351+2T>C, highlights the extensive variable expressivity amongst patients, reinforces the contribution of genomic content to clinical characteristics of CD151 mutations, and accentuates the importance of modifier genes.
ISSN:1661-8769
1661-8777
DOI:10.1159/000519633