Loading…
Studies of Nonstoichiometry and Physical Properties of the Perovskite $Sr_xHo_{1-x}FeO_{3-y}$ System
Perovskite type oxides of the $Sr_xHo_{1-x}FeO_{3-y}$ system with compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been prepared at 1200$^{\circ}$C in air. X-ray powder diffraction assigns the compositions with x=0.00 and 0.25 to the orthorhombic crystal system and those with x=0.50, 0.75, an...
Saved in:
Published in: | Bulletin of the Korean Chemical Society 1994, Vol.15 (3), p.256-260 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | Korean |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Perovskite type oxides of the $Sr_xHo_{1-x}FeO_{3-y}$ system with compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been prepared at 1200$^{\circ}$C in air. X-ray powder diffraction assigns the compositions with x=0.00 and 0.25 to the orthorhombic crystal system and those with x=0.50, 0.75, and 1.00 to the cubic one. The unit cell volumes of solid solutions increase with x in the system. Nonstoichiometric chemical formulas were determined by Mohr salt titration. The mole ratio of $Fe^{4+}$ ions to total iron ions and the concentration of oxygen ion vacancies increase with x. Mossbauer spectra for the compositions of x= 0.00, 0.25, and 0.50 show six lines indicating the presence of $Fe^{3+}$ ions in the octahedral site. However, the presence of $Fe^{4+}$ ions may also be detected in the spectra for the compositions with x=0.25 and x=0.50. In the compositions with x=0.75 and 1.00, single line patterns show also the mixed valence state of $Fe^{3+}$ and $Fe^{4+}$ ions. The electrical conductivity in the temperature range of -100$^{\circ}$C to 100$^{\circ}$C under atmospheric air pressure increases sharply with x but the activation energy decreases with the mole ratio of $Fe^{4+}$ ion. The conduction mechanism of the perovskite system seems to be hopping of the conduction electrons between the mixed valence iron ions. |
---|---|
ISSN: | 0253-2964 1229-5949 |