Loading…
Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor
We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled wit...
Saved in:
Published in: | Bulletin of the Korean Chemical Society 2011, Vol.32 (6), p.2003-2007 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | Korean |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled with a TAMRA moiety at the 5' end and used as a Raman reporter. Polyamine spermine tetrahydrochloride (spermine) was used to promote surface adsorption of the aptamer probes onto the silver nanoparticles. When $Hg^{2+}$ ions are added to the system, binding of $Hg^{2+}$ with T-T pairs results in a conformational rearrangement of the aptamer to form a hairpin structure. As a result of the reduced of electrostatic repulsion between silver nanoparticles, aggregation of silver nanoparticles occurs, and the SERS signal is significantly increased upon the addition of $Hg^{2+}$ ions. Under optimized assay conditions, the concentration limit of detection was estimated to be 5 nM, and this satisfies a limit of detection below the EPA defined limit of 10 nM in drinkable water. |
---|---|
ISSN: | 0253-2964 1229-5949 |