Loading…

A REMARK ON IFP RINGS

We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP...

Full description

Saved in:
Bibliographic Details
Published in:Korean Journal of mathematics 2013, Vol.21 (3), p.311-318
Main Authors: Lee, Chang Hyeok, Lim, Hyo Jin, Park, Jae Hyoung, Kim, Jung Hyun, Kim, Jung Soo, Jeong, Min Joon, Song, Min Kyung, Kim, Si Hwan, Hwang, Su Min, Eom, Tae Kang, Lee, Min Jung, Lee, Yang, Ryu, Sung Ju
Format: Article
Language:Korean
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 318
container_issue 3
container_start_page 311
container_title Korean Journal of mathematics
container_volume 21
creator Lee, Chang Hyeok
Lim, Hyo Jin
Park, Jae Hyoung
Kim, Jung Hyun
Kim, Jung Soo
Jeong, Min Joon
Song, Min Kyung
Kim, Si Hwan
Hwang, Su Min
Eom, Tae Kang
Lee, Min Jung
Lee, Yang
Ryu, Sung Ju
description We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.
format article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201330251814024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201330251814024</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2013302518140243</originalsourceid><addsrcrecordid>eNpjYuA0MrKw0DU0MTZmYeA0tDQ307UwMzDlYOAtLs5MMjA2MzK3MDIx5WQQdVQIcvV1DPJW8PdT8HQLUAjy9HMP5mFgTUvMKU7lhdLcDKpuriHOHrrZmcUlmfF5KcU58V6O3v5GBobGxgZGpoYWhiYGRibGxKoDADKBJnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A REMARK ON IFP RINGS</title><source>EZB Electronic Journals Library</source><creator>Lee, Chang Hyeok ; Lim, Hyo Jin ; Park, Jae Hyoung ; Kim, Jung Hyun ; Kim, Jung Soo ; Jeong, Min Joon ; Song, Min Kyung ; Kim, Si Hwan ; Hwang, Su Min ; Eom, Tae Kang ; Lee, Min Jung ; Lee, Yang ; Ryu, Sung Ju</creator><creatorcontrib>Lee, Chang Hyeok ; Lim, Hyo Jin ; Park, Jae Hyoung ; Kim, Jung Hyun ; Kim, Jung Soo ; Jeong, Min Joon ; Song, Min Kyung ; Kim, Si Hwan ; Hwang, Su Min ; Eom, Tae Kang ; Lee, Min Jung ; Lee, Yang ; Ryu, Sung Ju</creatorcontrib><description>We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.</description><identifier>ISSN: 1976-8605</identifier><identifier>EISSN: 2288-1433</identifier><language>kor</language><ispartof>Korean Journal of mathematics, 2013, Vol.21 (3), p.311-318</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Lee, Chang Hyeok</creatorcontrib><creatorcontrib>Lim, Hyo Jin</creatorcontrib><creatorcontrib>Park, Jae Hyoung</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Kim, Jung Soo</creatorcontrib><creatorcontrib>Jeong, Min Joon</creatorcontrib><creatorcontrib>Song, Min Kyung</creatorcontrib><creatorcontrib>Kim, Si Hwan</creatorcontrib><creatorcontrib>Hwang, Su Min</creatorcontrib><creatorcontrib>Eom, Tae Kang</creatorcontrib><creatorcontrib>Lee, Min Jung</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Ryu, Sung Ju</creatorcontrib><title>A REMARK ON IFP RINGS</title><title>Korean Journal of mathematics</title><addtitle>Korean Journal of mathematics</addtitle><description>We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.</description><issn>1976-8605</issn><issn>2288-1433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0MrKw0DU0MTZmYeA0tDQ307UwMzDlYOAtLs5MMjA2MzK3MDIx5WQQdVQIcvV1DPJW8PdT8HQLUAjy9HMP5mFgTUvMKU7lhdLcDKpuriHOHrrZmcUlmfF5KcU58V6O3v5GBobGxgZGpoYWhiYGRibGxKoDADKBJnw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Lee, Chang Hyeok</creator><creator>Lim, Hyo Jin</creator><creator>Park, Jae Hyoung</creator><creator>Kim, Jung Hyun</creator><creator>Kim, Jung Soo</creator><creator>Jeong, Min Joon</creator><creator>Song, Min Kyung</creator><creator>Kim, Si Hwan</creator><creator>Hwang, Su Min</creator><creator>Eom, Tae Kang</creator><creator>Lee, Min Jung</creator><creator>Lee, Yang</creator><creator>Ryu, Sung Ju</creator><scope>JDI</scope></search><sort><creationdate>2013</creationdate><title>A REMARK ON IFP RINGS</title><author>Lee, Chang Hyeok ; Lim, Hyo Jin ; Park, Jae Hyoung ; Kim, Jung Hyun ; Kim, Jung Soo ; Jeong, Min Joon ; Song, Min Kyung ; Kim, Si Hwan ; Hwang, Su Min ; Eom, Tae Kang ; Lee, Min Jung ; Lee, Yang ; Ryu, Sung Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2013302518140243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chang Hyeok</creatorcontrib><creatorcontrib>Lim, Hyo Jin</creatorcontrib><creatorcontrib>Park, Jae Hyoung</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Kim, Jung Soo</creatorcontrib><creatorcontrib>Jeong, Min Joon</creatorcontrib><creatorcontrib>Song, Min Kyung</creatorcontrib><creatorcontrib>Kim, Si Hwan</creatorcontrib><creatorcontrib>Hwang, Su Min</creatorcontrib><creatorcontrib>Eom, Tae Kang</creatorcontrib><creatorcontrib>Lee, Min Jung</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Ryu, Sung Ju</creatorcontrib><collection>KoreaScience</collection><jtitle>Korean Journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chang Hyeok</au><au>Lim, Hyo Jin</au><au>Park, Jae Hyoung</au><au>Kim, Jung Hyun</au><au>Kim, Jung Soo</au><au>Jeong, Min Joon</au><au>Song, Min Kyung</au><au>Kim, Si Hwan</au><au>Hwang, Su Min</au><au>Eom, Tae Kang</au><au>Lee, Min Jung</au><au>Lee, Yang</au><au>Ryu, Sung Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A REMARK ON IFP RINGS</atitle><jtitle>Korean Journal of mathematics</jtitle><addtitle>Korean Journal of mathematics</addtitle><date>2013</date><risdate>2013</risdate><volume>21</volume><issue>3</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>1976-8605</issn><eissn>2288-1433</eissn><abstract>We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-8605
ispartof Korean Journal of mathematics, 2013, Vol.21 (3), p.311-318
issn 1976-8605
2288-1433
language kor
recordid cdi_kisti_ndsl_JAKO201330251814024
source EZB Electronic Journals Library
title A REMARK ON IFP RINGS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20REMARK%20ON%20IFP%20RINGS&rft.jtitle=Korean%20Journal%20of%20mathematics&rft.au=Lee,%20Chang%20Hyeok&rft.date=2013&rft.volume=21&rft.issue=3&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=1976-8605&rft.eissn=2288-1433&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201330251814024%3C/kisti%3E%3Cgrp_id%3Ecdi_FETCH-kisti_ndsl_JAKO2013302518140243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true