Loading…
A REMARK ON IFP RINGS
We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP...
Saved in:
Published in: | Korean Journal of mathematics 2013, Vol.21 (3), p.311-318 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | Korean |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 318 |
container_issue | 3 |
container_start_page | 311 |
container_title | Korean Journal of mathematics |
container_volume | 21 |
creator | Lee, Chang Hyeok Lim, Hyo Jin Park, Jae Hyoung Kim, Jung Hyun Kim, Jung Soo Jeong, Min Joon Song, Min Kyung Kim, Si Hwan Hwang, Su Min Eom, Tae Kang Lee, Min Jung Lee, Yang Ryu, Sung Ju |
description | We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients. |
format | article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201330251814024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201330251814024</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2013302518140243</originalsourceid><addsrcrecordid>eNpjYuA0MrKw0DU0MTZmYeA0tDQ307UwMzDlYOAtLs5MMjA2MzK3MDIx5WQQdVQIcvV1DPJW8PdT8HQLUAjy9HMP5mFgTUvMKU7lhdLcDKpuriHOHrrZmcUlmfF5KcU58V6O3v5GBobGxgZGpoYWhiYGRibGxKoDADKBJnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A REMARK ON IFP RINGS</title><source>EZB Electronic Journals Library</source><creator>Lee, Chang Hyeok ; Lim, Hyo Jin ; Park, Jae Hyoung ; Kim, Jung Hyun ; Kim, Jung Soo ; Jeong, Min Joon ; Song, Min Kyung ; Kim, Si Hwan ; Hwang, Su Min ; Eom, Tae Kang ; Lee, Min Jung ; Lee, Yang ; Ryu, Sung Ju</creator><creatorcontrib>Lee, Chang Hyeok ; Lim, Hyo Jin ; Park, Jae Hyoung ; Kim, Jung Hyun ; Kim, Jung Soo ; Jeong, Min Joon ; Song, Min Kyung ; Kim, Si Hwan ; Hwang, Su Min ; Eom, Tae Kang ; Lee, Min Jung ; Lee, Yang ; Ryu, Sung Ju</creatorcontrib><description>We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.</description><identifier>ISSN: 1976-8605</identifier><identifier>EISSN: 2288-1433</identifier><language>kor</language><ispartof>Korean Journal of mathematics, 2013, Vol.21 (3), p.311-318</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Lee, Chang Hyeok</creatorcontrib><creatorcontrib>Lim, Hyo Jin</creatorcontrib><creatorcontrib>Park, Jae Hyoung</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Kim, Jung Soo</creatorcontrib><creatorcontrib>Jeong, Min Joon</creatorcontrib><creatorcontrib>Song, Min Kyung</creatorcontrib><creatorcontrib>Kim, Si Hwan</creatorcontrib><creatorcontrib>Hwang, Su Min</creatorcontrib><creatorcontrib>Eom, Tae Kang</creatorcontrib><creatorcontrib>Lee, Min Jung</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Ryu, Sung Ju</creatorcontrib><title>A REMARK ON IFP RINGS</title><title>Korean Journal of mathematics</title><addtitle>Korean Journal of mathematics</addtitle><description>We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.</description><issn>1976-8605</issn><issn>2288-1433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0MrKw0DU0MTZmYeA0tDQ307UwMzDlYOAtLs5MMjA2MzK3MDIx5WQQdVQIcvV1DPJW8PdT8HQLUAjy9HMP5mFgTUvMKU7lhdLcDKpuriHOHrrZmcUlmfF5KcU58V6O3v5GBobGxgZGpoYWhiYGRibGxKoDADKBJnw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Lee, Chang Hyeok</creator><creator>Lim, Hyo Jin</creator><creator>Park, Jae Hyoung</creator><creator>Kim, Jung Hyun</creator><creator>Kim, Jung Soo</creator><creator>Jeong, Min Joon</creator><creator>Song, Min Kyung</creator><creator>Kim, Si Hwan</creator><creator>Hwang, Su Min</creator><creator>Eom, Tae Kang</creator><creator>Lee, Min Jung</creator><creator>Lee, Yang</creator><creator>Ryu, Sung Ju</creator><scope>JDI</scope></search><sort><creationdate>2013</creationdate><title>A REMARK ON IFP RINGS</title><author>Lee, Chang Hyeok ; Lim, Hyo Jin ; Park, Jae Hyoung ; Kim, Jung Hyun ; Kim, Jung Soo ; Jeong, Min Joon ; Song, Min Kyung ; Kim, Si Hwan ; Hwang, Su Min ; Eom, Tae Kang ; Lee, Min Jung ; Lee, Yang ; Ryu, Sung Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2013302518140243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chang Hyeok</creatorcontrib><creatorcontrib>Lim, Hyo Jin</creatorcontrib><creatorcontrib>Park, Jae Hyoung</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Kim, Jung Soo</creatorcontrib><creatorcontrib>Jeong, Min Joon</creatorcontrib><creatorcontrib>Song, Min Kyung</creatorcontrib><creatorcontrib>Kim, Si Hwan</creatorcontrib><creatorcontrib>Hwang, Su Min</creatorcontrib><creatorcontrib>Eom, Tae Kang</creatorcontrib><creatorcontrib>Lee, Min Jung</creatorcontrib><creatorcontrib>Lee, Yang</creatorcontrib><creatorcontrib>Ryu, Sung Ju</creatorcontrib><collection>KoreaScience</collection><jtitle>Korean Journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chang Hyeok</au><au>Lim, Hyo Jin</au><au>Park, Jae Hyoung</au><au>Kim, Jung Hyun</au><au>Kim, Jung Soo</au><au>Jeong, Min Joon</au><au>Song, Min Kyung</au><au>Kim, Si Hwan</au><au>Hwang, Su Min</au><au>Eom, Tae Kang</au><au>Lee, Min Jung</au><au>Lee, Yang</au><au>Ryu, Sung Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A REMARK ON IFP RINGS</atitle><jtitle>Korean Journal of mathematics</jtitle><addtitle>Korean Journal of mathematics</addtitle><date>2013</date><risdate>2013</risdate><volume>21</volume><issue>3</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>1976-8605</issn><eissn>2288-1433</eissn><abstract>We continue the study of power-Armendariz rings over IFP rings, introducing $k$-power Armendariz rings as a generalization of power-Armendariz rings. Han et al. showed that IFP rings are 1-power Armendariz. We prove that IFP rings are 2-power Armendariz. We moreover study a relationship between IFP rings and $k$-power Armendariz rings under a condition related to nilpotency of coefficients.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-8605 |
ispartof | Korean Journal of mathematics, 2013, Vol.21 (3), p.311-318 |
issn | 1976-8605 2288-1433 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201330251814024 |
source | EZB Electronic Journals Library |
title | A REMARK ON IFP RINGS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20REMARK%20ON%20IFP%20RINGS&rft.jtitle=Korean%20Journal%20of%20mathematics&rft.au=Lee,%20Chang%20Hyeok&rft.date=2013&rft.volume=21&rft.issue=3&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=1976-8605&rft.eissn=2288-1433&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201330251814024%3C/kisti%3E%3Cgrp_id%3Ecdi_FETCH-kisti_ndsl_JAKO2013302518140243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |