Loading…

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumina...

Full description

Saved in:
Bibliographic Details
Published in:KSII transactions on Internet and information systems 2016-11, Vol.10 (11), p.5605-5623
Main Authors: Jeon, Tae-jun, Jang, Kyeong-uk, Lee, Seung-ho
Format: Article
Language:Korean
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5623
container_issue 11
container_start_page 5605
container_title KSII transactions on Internet and information systems
container_volume 10
creator Jeon, Tae-jun
Jang, Kyeong-uk
Lee, Seung-ho
description We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual`s recognition capability, and outperforms the existing methods.
format article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201607959403916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3532040</kiss_id><sourcerecordid>3532040</sourcerecordid><originalsourceid>FETCH-LOGICAL-k506-9cda88baab38aec96fbe7c70cf0907bd579150f971e530e2e0c820f75caae0e53</originalsourceid><addsrcrecordid>eNpNjEFLwzAYhosoOOZ-gZdcPBa-pkuTHEdxU9c5kV2lfE2TLbQmo0kV_70FRTy9Dy8Pz0UyyyQvUk45v_zH18kiBNtARgUtlkLMkrdn_6F7stPx5Fti_EDWqDR51cofnY3WOzIG646kwnOPyqIj3pANjlNn4h2GjnzaeCKVV9iT0rvox4G8YIx6cDfJlcE-6MXvzpPD-v5QPqTVfvNYrqq0Y1CkUrUoRIPY5AK1koVpNFcclAEJvGkZlxkDI3mmWQ6aalCCguFMIWqYvnly95PtbIi2dm3o66fVdk8hK4BLJpeQy6yYvNs_L9Tnwb7j8FXnLKcwGd_elVmD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern</title><source>EZB Electronic Journals Library</source><creator>Jeon, Tae-jun ; Jang, Kyeong-uk ; Lee, Seung-ho</creator><creatorcontrib>Jeon, Tae-jun ; Jang, Kyeong-uk ; Lee, Seung-ho</creatorcontrib><description>We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual`s recognition capability, and outperforms the existing methods.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>Computer Vision Systems ; Face Recognition ; Local Contour Pattern (LCP) ; Nearest Neighbor Classifier ; Pattern Recognition</subject><ispartof>KSII transactions on Internet and information systems, 2016-11, Vol.10 (11), p.5605-5623</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Jeon, Tae-jun</creatorcontrib><creatorcontrib>Jang, Kyeong-uk</creatorcontrib><creatorcontrib>Lee, Seung-ho</creatorcontrib><title>Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual`s recognition capability, and outperforms the existing methods.</description><subject>Computer Vision Systems</subject><subject>Face Recognition</subject><subject>Local Contour Pattern (LCP)</subject><subject>Nearest Neighbor Classifier</subject><subject>Pattern Recognition</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNjEFLwzAYhosoOOZ-gZdcPBa-pkuTHEdxU9c5kV2lfE2TLbQmo0kV_70FRTy9Dy8Pz0UyyyQvUk45v_zH18kiBNtARgUtlkLMkrdn_6F7stPx5Fti_EDWqDR51cofnY3WOzIG646kwnOPyqIj3pANjlNn4h2GjnzaeCKVV9iT0rvox4G8YIx6cDfJlcE-6MXvzpPD-v5QPqTVfvNYrqq0Y1CkUrUoRIPY5AK1koVpNFcclAEJvGkZlxkDI3mmWQ6aalCCguFMIWqYvnly95PtbIi2dm3o66fVdk8hK4BLJpeQy6yYvNs_L9Tnwb7j8FXnLKcwGd_elVmD</recordid><startdate>20161130</startdate><enddate>20161130</enddate><creator>Jeon, Tae-jun</creator><creator>Jang, Kyeong-uk</creator><creator>Lee, Seung-ho</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20161130</creationdate><title>Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern</title><author>Jeon, Tae-jun ; Jang, Kyeong-uk ; Lee, Seung-ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k506-9cda88baab38aec96fbe7c70cf0907bd579150f971e530e2e0c820f75caae0e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2016</creationdate><topic>Computer Vision Systems</topic><topic>Face Recognition</topic><topic>Local Contour Pattern (LCP)</topic><topic>Nearest Neighbor Classifier</topic><topic>Pattern Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Tae-jun</creatorcontrib><creatorcontrib>Jang, Kyeong-uk</creatorcontrib><creatorcontrib>Lee, Seung-ho</creatorcontrib><collection>KISS(한국학술정보)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Tae-jun</au><au>Jang, Kyeong-uk</au><au>Lee, Seung-ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2016-11-30</date><risdate>2016</risdate><volume>10</volume><issue>11</issue><spage>5605</spage><epage>5623</epage><pages>5605-5623</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual`s recognition capability, and outperforms the existing methods.</abstract><pub>한국인터넷정보학회</pub><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2016-11, Vol.10 (11), p.5605-5623
issn 1976-7277
1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO201607959403916
source EZB Electronic Journals Library
subjects Computer Vision Systems
Face Recognition
Local Contour Pattern (LCP)
Nearest Neighbor Classifier
Pattern Recognition
title Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Method%20for%20Face%20Recognition%20using%20Laplacian%20of%20Gaussian%20Mask%20with%20Local%20Contour%20Pattern&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Jeon,%20Tae-jun&rft.date=2016-11-30&rft.volume=10&rft.issue=11&rft.spage=5605&rft.epage=5623&rft.pages=5605-5623&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3532040%3C/kiss_kisti%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-k506-9cda88baab38aec96fbe7c70cf0907bd579150f971e530e2e0c820f75caae0e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3532040&rfr_iscdi=true