Loading…

Analysis of metabolomic patterns in thoroughbreds before and after exercise

Objective: Evaluation of exercise effects in racehorses is important in horseracing industry and animal health care. In this study, we compared metabolic patterns between before and after exercise to screen metabolic biomarkers for exercise effects in thoroughbreds. Methods: The concentration of met...

Full description

Saved in:
Bibliographic Details
Published in:Asian-australasian journal of animal sciences 2017, Vol.30 (11), p.1633-1642
Main Authors: Jang, Hyun-Jun, Kim, Duk-Moon, Kim, Kyu-Bong, Park, Jeong-Woong, Choi, Jae-Young, Oh, Jin Hyeog, Song, Ki-Duk, Kim, Suhkmann, Cho, Byung-Wook
Format: Article
Language:Korean
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: Evaluation of exercise effects in racehorses is important in horseracing industry and animal health care. In this study, we compared metabolic patterns between before and after exercise to screen metabolic biomarkers for exercise effects in thoroughbreds. Methods: The concentration of metabolites in muscle, plasma, and urine was measured by $^1H$ nuclear magnetic resonance (NMR) spectroscopy analysis and the relative metabolite levels in the three samples were compared between before and after exercise. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA) and variable important plots and t-test was used for basic statistical analysis. Results: From $^1H$ NMR spectroscopy analysis, 35, 25, and 34 metabolites were detected in the muscle, plasma, and urine. Aspartate, betaine, choline, cysteine, ethanol, and threonine were increased over 2-fold in the muscle; propionate and trimethylamine were increased over 2-fold in the plasma; and alanine, glycerol, inosine, lactate, and pyruvate were increased over 2-fold whereas acetoacetate, arginine, citrulline, creatine, glutamine, glutarate, hippurate, lysine, methionine, phenylacetylglycine, taurine, trigonelline, trimethylamine, and trimethylamine N-oxide were decreased below 0.5-fold in the urine. The OPLS-DA showed clear separation of the metabolic patterns before and after exercise in the muscle, plasma, and urine. Statistical analysis showed that after exercise, acetoacetate, arginine, glutamine, hippurate, phenylacetylglycine trimethylamine, trimethylamine N-oxide, and trigonelline were significantly decreased and alanine, glycerol, inosine, lactate, and pyruvate were significantly increased in the urine (p
ISSN:1011-2367
1976-5517