Loading…
딥러닝을 이용한 인스타그램 이미지 분류
In this paper we introduce two experimental results from classification of Instagram images and some valuable lessons from them. We have tried some experiments for evaluating the competitive power of Convolutional Neural Network(CNN) in classification of real social network images such as Instagram...
Saved in:
Published in: | Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2017, Vol.18 (5), p.61-67 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | Korean |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we introduce two experimental results from classification of Instagram images and some valuable lessons from them. We have tried some experiments for evaluating the competitive power of Convolutional Neural Network(CNN) in classification of real social network images such as Instagram images. We used AlexNet and ResNet, which showed the most outstanding capabilities in ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2012 and 2015, respectively. And we used 240 Instagram images and 12 pre-defined categories for classifying social network images. Also, we performed fine-tuning using Inception V3 model, and compared those results. In the results of four cases of AlexNet, ResNet, Inception V3 and fine-tuned Inception V3, the Top-1 error rates were 49.58%, 40.42%, 30.42%, and 5.00%. And the Top-5 error rates were 35.42%, 25.00%, 20.83%, and 0.00% respectively. 본 논문에서는 딥러닝의 회선신경망을 이용한 실제 소셜 네트워크 상의 이미지 분류가 얼마나 효과적인지 알아보기 위한 실험을 수행하고, 그 결과와 그를 통해 알게 된 교훈에 대해 소개한다. 이를 위해 ImageNet Large Scale Visual Recognition Challenge(ILSVRC)의 2012년 대회와 2015년 대회에서 각각 우승을 차지한 AlexNet 모델과 ResNet 모델을 이용하였다. 평가를 위한 테스트 셋으로 인스타그램에서 수집한 이미지를 사용하였으며, 12개의 카테고리, 총 240개의 이미지로 구성되어 있다. 또한, Inception V3모델을 이용하여 fine-tuning을 실시하고, 그 결과를 비교하였다. AlexNet과 ResNet, Inception V3, fine-tuned Inception V3 이 네 가지 모델에 대한 Top-1 error rate들은 각각 49.58%, 40.42%, 30.42% 그리고 5.00%로 나타났으며, Top-5 error rate들은 각각 35.42%, 25.00%, 20.83% 그리고 0.00%로 나타났다. |
---|---|
ISSN: | 1598-0170 2287-1136 |