Loading…
A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS
Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2020, Vol.57 (2), p.275-280 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | Korean |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 280 |
container_issue | 2 |
container_start_page | 275 |
container_title | Taehan Suhakhoe hoebo |
container_volume | 57 |
creator | Bagheriyeh, Iraj Bahmanpour, Kamal Ghasemi, Ghader |
description | Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included. |
format | article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202009759222584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202009759222584</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2020097592225843</originalsourceid><addsrcrecordid>eNpjYeA0NDA01bUwMzbhYOAqLs4yMDAxNbI042SwdlTw8w9xVfD3U3D29_D39ffxd_d0dvRRcPH0dfUL9gSK-4e5BoEkXf10fR2dHUN9HCMVgjz93IN5GFjTEnOKU3mhNDeDqptriLOHbnZmcUlmfF5KcU68l6O3v5GBkYGBpbmppZGRkamFiTGx6gD9cC6W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS</title><source>Freely Accessible Journals</source><source>EZB Electronic Journals Library</source><creator>Bagheriyeh, Iraj ; Bahmanpour, Kamal ; Ghasemi, Ghader</creator><creatorcontrib>Bagheriyeh, Iraj ; Bahmanpour, Kamal ; Ghasemi, Ghader</creatorcontrib><description>Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.</description><identifier>ISSN: 1015-8634</identifier><language>kor</language><ispartof>Taehan Suhakhoe hoebo, 2020, Vol.57 (2), p.275-280</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022</link.rule.ids></links><search><creatorcontrib>Bagheriyeh, Iraj</creatorcontrib><creatorcontrib>Bahmanpour, Kamal</creatorcontrib><creatorcontrib>Ghasemi, Ghader</creatorcontrib><title>A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS</title><title>Taehan Suhakhoe hoebo</title><addtitle>대한수학회보</addtitle><description>Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.</description><issn>1015-8634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NDA01bUwMzbhYOAqLs4yMDAxNbI042SwdlTw8w9xVfD3U3D29_D39ffxd_d0dvRRcPH0dfUL9gSK-4e5BoEkXf10fR2dHUN9HCMVgjz93IN5GFjTEnOKU3mhNDeDqptriLOHbnZmcUlmfF5KcU68l6O3v5GBkYGBpbmppZGRkamFiTGx6gD9cC6W</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bagheriyeh, Iraj</creator><creator>Bahmanpour, Kamal</creator><creator>Ghasemi, Ghader</creator><scope>JDI</scope></search><sort><creationdate>2020</creationdate><title>A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS</title><author>Bagheriyeh, Iraj ; Bahmanpour, Kamal ; Ghasemi, Ghader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2020097592225843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheriyeh, Iraj</creatorcontrib><creatorcontrib>Bahmanpour, Kamal</creatorcontrib><creatorcontrib>Ghasemi, Ghader</creatorcontrib><collection>KoreaScience</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheriyeh, Iraj</au><au>Bahmanpour, Kamal</au><au>Ghasemi, Ghader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><addtitle>대한수학회보</addtitle><date>2020</date><risdate>2020</risdate><volume>57</volume><issue>2</issue><spage>275</spage><epage>280</epage><pages>275-280</pages><issn>1015-8634</issn><abstract>Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8634 |
ispartof | Taehan Suhakhoe hoebo, 2020, Vol.57 (2), p.275-280 |
issn | 1015-8634 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202009759222584 |
source | Freely Accessible Journals; EZB Electronic Journals Library |
title | A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOTE%20ON%20COHOMOLOGICAL%20DIMENSION%20OVER%20COHEN-MACAULAY%20RINGS&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=Bagheriyeh,%20Iraj&rft.date=2020&rft.volume=57&rft.issue=2&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.issn=1015-8634&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202009759222584%3C/kisti%3E%3Cgrp_id%3Ecdi_FETCH-kisti_ndsl_JAKO2020097592225843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |