Loading…

Improvement of blood lipid metabolism and obesity through the administration of mixed lactic acid bacteria including Lactobacillus plantarum K-1 in mice fed a high-fat diet

We investigated the effects of single and combined administrations of Lactobacillus species (L. plantarum, LP; L. gasseri, LG; L. casei, LC) on blood lipid metabolism and obesity in mice fed a high-fat diet (HFD). The mice were continuously supplemented with LP, LP/LG, or LP/LG/LC, along with HFD, f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied biological chemistry 2023-01, Vol.66 (66), p.328-337
Main Authors: Hyeon Ju Lim, Young Geol Yoon
Format: Article
Language:Korean
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the effects of single and combined administrations of Lactobacillus species (L. plantarum, LP; L. gasseri, LG; L. casei, LC) on blood lipid metabolism and obesity in mice fed a high-fat diet (HFD). The mice were continuously supplemented with LP, LP/LG, or LP/LG/LC, along with HFD, for 12 weeks. The consumption of HFD led to significant increases in body weight, total cholesterol, and triglyceride levels compared to the normal control group. However, administration of LP, LP/LG, or LP/LG/LC to HFD-fed mice reduced body weight gain and showed a tendency to suppress the levels of total cholesterol, triglycerides, and LDL-cholesterol, while increasing HDL-cholesterol levels. The HFD group exhibited increased abdominal fat weight and larger adipocytes in the epididymal adipose tissue compared to the NC group. However, the administered probiotics led to a significant reduction in adipocyte size with decreasing tendency in abdominal fat weight compared with the HFD group. Additionally, the deposition of giant vesicular fat cells in the liver of the HFD group considerably decreased in the probiotic-administered group. Microbiome analysis revealed an imbalance in intestinal microbes in the HFD group, characterized by lower Bacteroidetes and higher Proteobacteria ratios. However, probiotic administration tended to restore the microbial distribution by controlling the abundance of Bacteroidetes and Proteobacteria, resulting in decreased Firmicutes/Bacteroidetes and Proteobacteria/Bacteroidetes ratios. These results suggest that single and combined administration of LP and other probiotics holds enormous potential in reducing obesity in HFD-fed mice as they regulate lipid metabolism, reduce adipocyte size, and restore the balance of intestinal microbes.
ISSN:1976-0442
2234-7941