Loading…
AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES
Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that t...
Saved in:
Published in: | Taehan Suhakhoe hoebo 2024, Vol.61 (1), p.273-280 |
---|---|
Main Author: | |
Format: | Article |
Language: | Korean |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 280 |
container_issue | 1 |
container_start_page | 273 |
container_title | Taehan Suhakhoe hoebo |
container_volume | 61 |
creator | Gholamreza Pirmohammadi |
description | Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite. |
format | article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202408833835443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202408833835443</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2024088338354433</originalsourceid><addsrcrecordid>eNpjYeA0NDA01bUwMzbhYOAqLs4yMDAxNbI042TQc_RTcHRy9fEE0s6OIa7u_kGRCv5uCuGujt4-kQrO_m6efp4hrgq-_i6hPq7BPAysaYk5xam8UJqbQdXNNcTZQzc7s7gkMz4vpTgn3svR29_IwMjEwMLC2NjC2NTExNiYWHUAnvEq7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES</title><source>Freely Accessible Journals</source><source>EZB Electronic Journals Library</source><creator>Gholamreza Pirmohammadi</creator><creatorcontrib>Gholamreza Pirmohammadi</creatorcontrib><description>Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.</description><identifier>ISSN: 1015-8634</identifier><language>kor</language><ispartof>Taehan Suhakhoe hoebo, 2024, Vol.61 (1), p.273-280</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Gholamreza Pirmohammadi</creatorcontrib><title>AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES</title><title>Taehan Suhakhoe hoebo</title><addtitle>대한수학회보</addtitle><description>Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.</description><issn>1015-8634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NDA01bUwMzbhYOAqLs4yMDAxNbI042TQc_RTcHRy9fEE0s6OIa7u_kGRCv5uCuGujt4-kQrO_m6efp4hrgq-_i6hPq7BPAysaYk5xam8UJqbQdXNNcTZQzc7s7gkMz4vpTgn3svR29_IwMjEwMLC2NjC2NTExNiYWHUAnvEq7g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gholamreza Pirmohammadi</creator><scope>JDI</scope></search><sort><creationdate>2024</creationdate><title>AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES</title><author>Gholamreza Pirmohammadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2024088338354433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gholamreza Pirmohammadi</creatorcontrib><collection>KoreaScience</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gholamreza Pirmohammadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><addtitle>대한수학회보</addtitle><date>2024</date><risdate>2024</risdate><volume>61</volume><issue>1</issue><spage>273</spage><epage>280</epage><pages>273-280</pages><issn>1015-8634</issn><abstract>Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8634 |
ispartof | Taehan Suhakhoe hoebo, 2024, Vol.61 (1), p.273-280 |
issn | 1015-8634 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202408833835443 |
source | Freely Accessible Journals; EZB Electronic Journals Library |
title | AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ABELIAN%20CATEGORY%20OF%20WEAKLY%20COFINITE%20MODULES&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=Gholamreza%20Pirmohammadi&rft.date=2024&rft.volume=61&rft.issue=1&rft.spage=273&rft.epage=280&rft.pages=273-280&rft.issn=1015-8634&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202408833835443%3C/kisti%3E%3Cgrp_id%3Ecdi_FETCH-kisti_ndsl_JAKO2024088338354433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |