Loading…

환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구

본 논문에서는 환자와 같은 특정 객체의 움직임을 감지하고 추적하기 위한 효율적인 영상처리 시스템을 제안한다. 이진화된 차영상에서 객체의 윤곽선추출을 위하여 기존 알고리즘대비 대비 정밀한 감지가 가능하고 혼성모드설계에 용이한 세선화 알고리즘을 적용하여 영역을 추출한다. 연산량이 많은 이진화와 세선화 단계를 RTL(Register Transfer Level) 기반으로 설계하여 논리회로 합성을 거쳐 최적화된 하드웨어 블록으로 대체된다. 설계된 이진화 및 세선화 블록은 표준 180n CMOS 라이브러리를 이용하여 논리회로로 합성한 후 시뮬...

Full description

Saved in:
Bibliographic Details
Published in:Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2024-02, Vol.25 (1), p.29-37
Main Authors: 정승민, Seungmin Jung, 정의성, Euisung Jung, 김명환, Myeonghwan Kim
Format: Article
Language:Korean
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:본 논문에서는 환자와 같은 특정 객체의 움직임을 감지하고 추적하기 위한 효율적인 영상처리 시스템을 제안한다. 이진화된 차영상에서 객체의 윤곽선추출을 위하여 기존 알고리즘대비 대비 정밀한 감지가 가능하고 혼성모드설계에 용이한 세선화 알고리즘을 적용하여 영역을 추출한다. 연산량이 많은 이진화와 세선화 단계를 RTL(Register Transfer Level) 기반으로 설계하여 논리회로 합성을 거쳐 최적화된 하드웨어 블록으로 대체된다. 설계된 이진화 및 세선화 블록은 표준 180n CMOS 라이브러리를 이용하여 논리회로로 합성한 후 시뮬레이션을 통하여 동작을 검증하였다. 소프트웨어기반의 성능비교를 위해 32bit FPGA 임베디드시스템 환경에서 640 x 360 해상도의 샘플 영상을 적용하여 이진 및 세선화 연산에 대한 성능분석도 실시하였다. 검증결과 혼성모드 설계가 이전의 소프트웨어로만 이루어지는 처리속도에서 이진 및 세선화 단계에서 93.8% 향상될 수 있음을 확인하였다. 제안된 객체인식을 위한 혼성모드 시스템은 인공지능 네트워크가 적용되지 않는 엣지 컴퓨팅 환경에서도 환자의 움직임을 효율적으로 감시할 수 있을 것으로 기대된다. In this paper, we propose an efficient image processing system to detect and track the movement of specific objects such as patients. The proposed system extracts the outline area of an object from a binarized difference image by applying a thinning algorithm that enables more precise detection compared to previous algorithms and is advantageous for mixed-mode design. The binarization and thinning steps, which require a lot of computation, are designed based on RTL (Register Transfer Level) and replaced with optimized hardware blocks through logic circuit synthesis. The designed binarization and thinning block was synthesized into a logic circuit using the standard 180n CMOS library and its operation was verified through simulation. To compare software-based performance, performance analysis of binary and thinning operations was also performed by applying sample images with 640x 360 resolution in a 32-bit FPGA embedded system environment. As a result of verification, it was confirmed that the mixed-mode design can improve the processing speed by 93.8% in the binary and thinning stages compared to the previous software-only processing speed. The proposed mixed-mode system for object recognition is expected to be able to efficiently monitor patient movements even in an edge computing environment where artificial intelligence networks are not applied.
ISSN:1598-0170
2287-1136