Loading…

Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection

Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheim...

Full description

Saved in:
Bibliographic Details
Published in:Dementia and neurocognitive disorders 2024, Vol.23 (1), p.1-10
Main Authors: Chan-Young Park, Minsoo Kim, YongSoo Shim, Nayoung Ryoo, Hyunjoo Choi, Ho Tae Jeong, Gihyun Yun, Hunboc Lee, Hyungryul Kim, SangYun Kim, Young Chul Youn
Format: Article
Language:Korean
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10
container_issue 1
container_start_page 1
container_title Dementia and neurocognitive disorders
container_volume 23
creator Chan-Young Park
Minsoo Kim
YongSoo Shim
Nayoung Ryoo
Hyunjoo Choi
Ho Tae Jeong
Gihyun Yun
Hunboc Lee
Hyungryul Kim
SangYun Kim
Young Chul Youn
description Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.
format article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202423451610210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202423451610210</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2024234516102103</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMoWNQ7vI24KuRX27orVhHFz0JcCVL1VYOxkSRS8PR24QFcDQwzLRJwkciQxlHcJgGLRRIymUZdMnBOnamgLJVCyoAcF4WtsJHVDfwdYWdqtGBKOBh1wQlkkCO-YINvW-gGvjb2AWtzRQ2lsZDpzx3VE-3IQa4cFg6bw-PFK1P1SacstMPBjz0ynM_200X4UM6rU3V1-rTMVltOueRCRmzMKGdU_Nt9AWkGQhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection</title><source>PubMed Central(OpenAccess)</source><creator>Chan-Young Park ; Minsoo Kim ; YongSoo Shim ; Nayoung Ryoo ; Hyunjoo Choi ; Ho Tae Jeong ; Gihyun Yun ; Hunboc Lee ; Hyungryul Kim ; SangYun Kim ; Young Chul Youn</creator><creatorcontrib>Chan-Young Park ; Minsoo Kim ; YongSoo Shim ; Nayoung Ryoo ; Hyunjoo Choi ; Ho Tae Jeong ; Gihyun Yun ; Hunboc Lee ; Hyungryul Kim ; SangYun Kim ; Young Chul Youn</creatorcontrib><description>Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.</description><identifier>ISSN: 1738-1495</identifier><identifier>EISSN: 2384-0757</identifier><language>kor</language><ispartof>Dementia and neurocognitive disorders, 2024, Vol.23 (1), p.1-10</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Chan-Young Park</creatorcontrib><creatorcontrib>Minsoo Kim</creatorcontrib><creatorcontrib>YongSoo Shim</creatorcontrib><creatorcontrib>Nayoung Ryoo</creatorcontrib><creatorcontrib>Hyunjoo Choi</creatorcontrib><creatorcontrib>Ho Tae Jeong</creatorcontrib><creatorcontrib>Gihyun Yun</creatorcontrib><creatorcontrib>Hunboc Lee</creatorcontrib><creatorcontrib>Hyungryul Kim</creatorcontrib><creatorcontrib>SangYun Kim</creatorcontrib><creatorcontrib>Young Chul Youn</creatorcontrib><title>Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection</title><title>Dementia and neurocognitive disorders</title><addtitle>Dementia and neurocognitive disorders : offical journal of the Korean Dementia Association</addtitle><description>Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.</description><issn>1738-1495</issn><issn>2384-0757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNi0sKwjAUAIMoWNQ7vI24KuRX27orVhHFz0JcCVL1VYOxkSRS8PR24QFcDQwzLRJwkciQxlHcJgGLRRIymUZdMnBOnamgLJVCyoAcF4WtsJHVDfwdYWdqtGBKOBh1wQlkkCO-YINvW-gGvjb2AWtzRQ2lsZDpzx3VE-3IQa4cFg6bw-PFK1P1SacstMPBjz0ynM_200X4UM6rU3V1-rTMVltOueRCRmzMKGdU_Nt9AWkGQhg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chan-Young Park</creator><creator>Minsoo Kim</creator><creator>YongSoo Shim</creator><creator>Nayoung Ryoo</creator><creator>Hyunjoo Choi</creator><creator>Ho Tae Jeong</creator><creator>Gihyun Yun</creator><creator>Hunboc Lee</creator><creator>Hyungryul Kim</creator><creator>SangYun Kim</creator><creator>Young Chul Youn</creator><scope>JDI</scope></search><sort><creationdate>2024</creationdate><title>Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection</title><author>Chan-Young Park ; Minsoo Kim ; YongSoo Shim ; Nayoung Ryoo ; Hyunjoo Choi ; Ho Tae Jeong ; Gihyun Yun ; Hunboc Lee ; Hyungryul Kim ; SangYun Kim ; Young Chul Youn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2024234516102103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chan-Young Park</creatorcontrib><creatorcontrib>Minsoo Kim</creatorcontrib><creatorcontrib>YongSoo Shim</creatorcontrib><creatorcontrib>Nayoung Ryoo</creatorcontrib><creatorcontrib>Hyunjoo Choi</creatorcontrib><creatorcontrib>Ho Tae Jeong</creatorcontrib><creatorcontrib>Gihyun Yun</creatorcontrib><creatorcontrib>Hunboc Lee</creatorcontrib><creatorcontrib>Hyungryul Kim</creatorcontrib><creatorcontrib>SangYun Kim</creatorcontrib><creatorcontrib>Young Chul Youn</creatorcontrib><collection>KoreaScience</collection><jtitle>Dementia and neurocognitive disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan-Young Park</au><au>Minsoo Kim</au><au>YongSoo Shim</au><au>Nayoung Ryoo</au><au>Hyunjoo Choi</au><au>Ho Tae Jeong</au><au>Gihyun Yun</au><au>Hunboc Lee</au><au>Hyungryul Kim</au><au>SangYun Kim</au><au>Young Chul Youn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection</atitle><jtitle>Dementia and neurocognitive disorders</jtitle><addtitle>Dementia and neurocognitive disorders : offical journal of the Korean Dementia Association</addtitle><date>2024</date><risdate>2024</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1738-1495</issn><eissn>2384-0757</eissn><abstract>Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1738-1495
ispartof Dementia and neurocognitive disorders, 2024, Vol.23 (1), p.1-10
issn 1738-1495
2384-0757
language kor
recordid cdi_kisti_ndsl_JAKO202423451610210
source PubMed Central(OpenAccess)
title Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20the%20Power%20of%20Voice:%20A%20Deep%20Neural%20Network%20Model%20for%20Alzheimer's%20Disease%20Detection&rft.jtitle=Dementia%20and%20neurocognitive%20disorders&rft.au=Chan-Young%20Park&rft.date=2024&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1738-1495&rft.eissn=2384-0757&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202423451610210%3C/kisti%3E%3Cgrp_id%3Ecdi_FETCH-kisti_ndsl_JAKO2024234516102103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true