Loading…

Mechanisms of resistance to QoI fungicides in phytopathogenic fungi

The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site...

Full description

Saved in:
Bibliographic Details
Published in:International microbiology 2008-03, Vol.11 (1), p.1-10
Main Authors: Fernández-Ortuño, Dolores, Torés, Juan A, de Vicente, Antonio, Pérez-García, Alejandro
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3
cites
container_end_page 10
container_issue 1
container_start_page 1
container_title International microbiology
container_volume 11
creator Fernández-Ortuño, Dolores
Torés, Juan A
de Vicente, Antonio
Pérez-García, Alejandro
description The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.
doi_str_mv 10.2436/20.1501.01.38
format article
fullrecord <record><control><sourceid>pubmed_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_416564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18683626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3</originalsourceid><addsrcrecordid>eNo9j01LAzEQhoMotlaPXiV32ZpJdrPJUYrVQkUEPS_5mG0jbbJstmD_vQtVYeB94H0YZgi5BTbnpZAPnM2hYjAfR6gzMgUJqgDNqvORQehC1kxPyFXOX4xBLRW7JBNQUgnJ5ZQsXtFtTQx5n2lqaY855MFEh3RI9D2taHuIm-CCx0xDpN32OKTODNu0wRjcqb0mF63ZZbz5zRn5XD59LF6K9dvzavG4Lhxn5VBUnjEHmjsQaIWxZWW5GM-wpvJOWe3BaqdriXVtvGJ6BO6wdQJqI1uHYkbuT3t3ZggxRI_fTdeHvemPTTKh6dGl3jclyEqWo313sruD3aP_N_9-Fz8Ye1vq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</title><source>Springer Nature</source><creator>Fernández-Ortuño, Dolores ; Torés, Juan A ; de Vicente, Antonio ; Pérez-García, Alejandro</creator><creatorcontrib>Fernández-Ortuño, Dolores ; Torés, Juan A ; de Vicente, Antonio ; Pérez-García, Alejandro</creatorcontrib><description>The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.</description><identifier>ISSN: 1139-6709</identifier><identifier>EISSN: 1618-1905</identifier><identifier>DOI: 10.2436/20.1501.01.38</identifier><identifier>PMID: 18683626</identifier><language>eng</language><publisher>Switzerland: Sociedad Española de Microbiología</publisher><subject>alternative respiration ; ATP-Binding Cassette Transporters - metabolism ; cytochrome b ; Cytochromes c - genetics ; Cytochromes c - metabolism ; Drug Resistance, Fungal - physiology ; efflux transporters ; Electron Transport ; Fungi - drug effects ; Fungi - enzymology ; Fungi - pathogenicity ; fungicide resistance ; Fungicides, Industrial - pharmacology ; Membrane Transport Proteins - metabolism ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Proteins ; Mutation ; Oxidoreductases - metabolism ; Plant Diseases - microbiology ; Plant Proteins ; strobilur</subject><ispartof>International microbiology, 2008-03, Vol.11 (1), p.1-10</ispartof><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18683626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández-Ortuño, Dolores</creatorcontrib><creatorcontrib>Torés, Juan A</creatorcontrib><creatorcontrib>de Vicente, Antonio</creatorcontrib><creatorcontrib>Pérez-García, Alejandro</creatorcontrib><title>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</title><title>International microbiology</title><addtitle>Int Microbiol</addtitle><description>The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.</description><subject>alternative respiration</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>cytochrome b</subject><subject>Cytochromes c - genetics</subject><subject>Cytochromes c - metabolism</subject><subject>Drug Resistance, Fungal - physiology</subject><subject>efflux transporters</subject><subject>Electron Transport</subject><subject>Fungi - drug effects</subject><subject>Fungi - enzymology</subject><subject>Fungi - pathogenicity</subject><subject>fungicide resistance</subject><subject>Fungicides, Industrial - pharmacology</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins</subject><subject>Mutation</subject><subject>Oxidoreductases - metabolism</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Proteins</subject><subject>strobilur</subject><issn>1139-6709</issn><issn>1618-1905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEQhoMotlaPXiV32ZpJdrPJUYrVQkUEPS_5mG0jbbJstmD_vQtVYeB94H0YZgi5BTbnpZAPnM2hYjAfR6gzMgUJqgDNqvORQehC1kxPyFXOX4xBLRW7JBNQUgnJ5ZQsXtFtTQx5n2lqaY855MFEh3RI9D2taHuIm-CCx0xDpN32OKTODNu0wRjcqb0mF63ZZbz5zRn5XD59LF6K9dvzavG4Lhxn5VBUnjEHmjsQaIWxZWW5GM-wpvJOWe3BaqdriXVtvGJ6BO6wdQJqI1uHYkbuT3t3ZggxRI_fTdeHvemPTTKh6dGl3jclyEqWo313sruD3aP_N_9-Fz8Ye1vq</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Fernández-Ortuño, Dolores</creator><creator>Torés, Juan A</creator><creator>de Vicente, Antonio</creator><creator>Pérez-García, Alejandro</creator><general>Sociedad Española de Microbiología</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>77F</scope></search><sort><creationdate>200803</creationdate><title>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</title><author>Fernández-Ortuño, Dolores ; Torés, Juan A ; de Vicente, Antonio ; Pérez-García, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>alternative respiration</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>cytochrome b</topic><topic>Cytochromes c - genetics</topic><topic>Cytochromes c - metabolism</topic><topic>Drug Resistance, Fungal - physiology</topic><topic>efflux transporters</topic><topic>Electron Transport</topic><topic>Fungi - drug effects</topic><topic>Fungi - enzymology</topic><topic>Fungi - pathogenicity</topic><topic>fungicide resistance</topic><topic>Fungicides, Industrial - pharmacology</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins</topic><topic>Mutation</topic><topic>Oxidoreductases - metabolism</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Proteins</topic><topic>strobilur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Ortuño, Dolores</creatorcontrib><creatorcontrib>Torés, Juan A</creatorcontrib><creatorcontrib>de Vicente, Antonio</creatorcontrib><creatorcontrib>Pérez-García, Alejandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Latindex</collection><jtitle>International microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Ortuño, Dolores</au><au>Torés, Juan A</au><au>de Vicente, Antonio</au><au>Pérez-García, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</atitle><jtitle>International microbiology</jtitle><addtitle>Int Microbiol</addtitle><date>2008-03</date><risdate>2008</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1139-6709</issn><eissn>1618-1905</eissn><abstract>The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.</abstract><cop>Switzerland</cop><pub>Sociedad Española de Microbiología</pub><pmid>18683626</pmid><doi>10.2436/20.1501.01.38</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1139-6709
ispartof International microbiology, 2008-03, Vol.11 (1), p.1-10
issn 1139-6709
1618-1905
language eng
recordid cdi_latinindex_primary_oai_record_416564
source Springer Nature
subjects alternative respiration
ATP-Binding Cassette Transporters - metabolism
cytochrome b
Cytochromes c - genetics
Cytochromes c - metabolism
Drug Resistance, Fungal - physiology
efflux transporters
Electron Transport
Fungi - drug effects
Fungi - enzymology
Fungi - pathogenicity
fungicide resistance
Fungicides, Industrial - pharmacology
Membrane Transport Proteins - metabolism
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial Proteins
Mutation
Oxidoreductases - metabolism
Plant Diseases - microbiology
Plant Proteins
strobilur
title Mechanisms of resistance to QoI fungicides in phytopathogenic fungi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20resistance%20to%20QoI%20fungicides%20in%20phytopathogenic%20fungi&rft.jtitle=International%20microbiology&rft.au=Fern%C3%A1ndez-Ortu%C3%B1o,%20Dolores&rft.date=2008-03&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1139-6709&rft.eissn=1618-1905&rft_id=info:doi/10.2436/20.1501.01.38&rft_dat=%3Cpubmed_latin%3E18683626%3C/pubmed_latin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/18683626&rfr_iscdi=true