Loading…
Mechanisms of resistance to QoI fungicides in phytopathogenic fungi
The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site...
Saved in:
Published in: | International microbiology 2008-03, Vol.11 (1), p.1-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3 |
---|---|
cites | |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 1 |
container_title | International microbiology |
container_volume | 11 |
creator | Fernández-Ortuño, Dolores Torés, Juan A de Vicente, Antonio Pérez-García, Alejandro |
description | The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides. |
doi_str_mv | 10.2436/20.1501.01.38 |
format | article |
fullrecord | <record><control><sourceid>pubmed_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_416564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18683626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3</originalsourceid><addsrcrecordid>eNo9j01LAzEQhoMotlaPXiV32ZpJdrPJUYrVQkUEPS_5mG0jbbJstmD_vQtVYeB94H0YZgi5BTbnpZAPnM2hYjAfR6gzMgUJqgDNqvORQehC1kxPyFXOX4xBLRW7JBNQUgnJ5ZQsXtFtTQx5n2lqaY855MFEh3RI9D2taHuIm-CCx0xDpN32OKTODNu0wRjcqb0mF63ZZbz5zRn5XD59LF6K9dvzavG4Lhxn5VBUnjEHmjsQaIWxZWW5GM-wpvJOWe3BaqdriXVtvGJ6BO6wdQJqI1uHYkbuT3t3ZggxRI_fTdeHvemPTTKh6dGl3jclyEqWo313sruD3aP_N_9-Fz8Ye1vq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</title><source>Springer Nature</source><creator>Fernández-Ortuño, Dolores ; Torés, Juan A ; de Vicente, Antonio ; Pérez-García, Alejandro</creator><creatorcontrib>Fernández-Ortuño, Dolores ; Torés, Juan A ; de Vicente, Antonio ; Pérez-García, Alejandro</creatorcontrib><description>The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.</description><identifier>ISSN: 1139-6709</identifier><identifier>EISSN: 1618-1905</identifier><identifier>DOI: 10.2436/20.1501.01.38</identifier><identifier>PMID: 18683626</identifier><language>eng</language><publisher>Switzerland: Sociedad Española de Microbiología</publisher><subject>alternative respiration ; ATP-Binding Cassette Transporters - metabolism ; cytochrome b ; Cytochromes c - genetics ; Cytochromes c - metabolism ; Drug Resistance, Fungal - physiology ; efflux transporters ; Electron Transport ; Fungi - drug effects ; Fungi - enzymology ; Fungi - pathogenicity ; fungicide resistance ; Fungicides, Industrial - pharmacology ; Membrane Transport Proteins - metabolism ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Proteins ; Mutation ; Oxidoreductases - metabolism ; Plant Diseases - microbiology ; Plant Proteins ; strobilur</subject><ispartof>International microbiology, 2008-03, Vol.11 (1), p.1-10</ispartof><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18683626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández-Ortuño, Dolores</creatorcontrib><creatorcontrib>Torés, Juan A</creatorcontrib><creatorcontrib>de Vicente, Antonio</creatorcontrib><creatorcontrib>Pérez-García, Alejandro</creatorcontrib><title>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</title><title>International microbiology</title><addtitle>Int Microbiol</addtitle><description>The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.</description><subject>alternative respiration</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>cytochrome b</subject><subject>Cytochromes c - genetics</subject><subject>Cytochromes c - metabolism</subject><subject>Drug Resistance, Fungal - physiology</subject><subject>efflux transporters</subject><subject>Electron Transport</subject><subject>Fungi - drug effects</subject><subject>Fungi - enzymology</subject><subject>Fungi - pathogenicity</subject><subject>fungicide resistance</subject><subject>Fungicides, Industrial - pharmacology</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins</subject><subject>Mutation</subject><subject>Oxidoreductases - metabolism</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Proteins</subject><subject>strobilur</subject><issn>1139-6709</issn><issn>1618-1905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEQhoMotlaPXiV32ZpJdrPJUYrVQkUEPS_5mG0jbbJstmD_vQtVYeB94H0YZgi5BTbnpZAPnM2hYjAfR6gzMgUJqgDNqvORQehC1kxPyFXOX4xBLRW7JBNQUgnJ5ZQsXtFtTQx5n2lqaY855MFEh3RI9D2taHuIm-CCx0xDpN32OKTODNu0wRjcqb0mF63ZZbz5zRn5XD59LF6K9dvzavG4Lhxn5VBUnjEHmjsQaIWxZWW5GM-wpvJOWe3BaqdriXVtvGJ6BO6wdQJqI1uHYkbuT3t3ZggxRI_fTdeHvemPTTKh6dGl3jclyEqWo313sruD3aP_N_9-Fz8Ye1vq</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Fernández-Ortuño, Dolores</creator><creator>Torés, Juan A</creator><creator>de Vicente, Antonio</creator><creator>Pérez-García, Alejandro</creator><general>Sociedad Española de Microbiología</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>77F</scope></search><sort><creationdate>200803</creationdate><title>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</title><author>Fernández-Ortuño, Dolores ; Torés, Juan A ; de Vicente, Antonio ; Pérez-García, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>alternative respiration</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>cytochrome b</topic><topic>Cytochromes c - genetics</topic><topic>Cytochromes c - metabolism</topic><topic>Drug Resistance, Fungal - physiology</topic><topic>efflux transporters</topic><topic>Electron Transport</topic><topic>Fungi - drug effects</topic><topic>Fungi - enzymology</topic><topic>Fungi - pathogenicity</topic><topic>fungicide resistance</topic><topic>Fungicides, Industrial - pharmacology</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins</topic><topic>Mutation</topic><topic>Oxidoreductases - metabolism</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Proteins</topic><topic>strobilur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Ortuño, Dolores</creatorcontrib><creatorcontrib>Torés, Juan A</creatorcontrib><creatorcontrib>de Vicente, Antonio</creatorcontrib><creatorcontrib>Pérez-García, Alejandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Latindex</collection><jtitle>International microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Ortuño, Dolores</au><au>Torés, Juan A</au><au>de Vicente, Antonio</au><au>Pérez-García, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of resistance to QoI fungicides in phytopathogenic fungi</atitle><jtitle>International microbiology</jtitle><addtitle>Int Microbiol</addtitle><date>2008-03</date><risdate>2008</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1139-6709</issn><eissn>1618-1905</eissn><abstract>The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides.</abstract><cop>Switzerland</cop><pub>Sociedad Española de Microbiología</pub><pmid>18683626</pmid><doi>10.2436/20.1501.01.38</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1139-6709 |
ispartof | International microbiology, 2008-03, Vol.11 (1), p.1-10 |
issn | 1139-6709 1618-1905 |
language | eng |
recordid | cdi_latinindex_primary_oai_record_416564 |
source | Springer Nature |
subjects | alternative respiration ATP-Binding Cassette Transporters - metabolism cytochrome b Cytochromes c - genetics Cytochromes c - metabolism Drug Resistance, Fungal - physiology efflux transporters Electron Transport Fungi - drug effects Fungi - enzymology Fungi - pathogenicity fungicide resistance Fungicides, Industrial - pharmacology Membrane Transport Proteins - metabolism Mitochondria - drug effects Mitochondria - metabolism Mitochondrial Proteins Mutation Oxidoreductases - metabolism Plant Diseases - microbiology Plant Proteins strobilur |
title | Mechanisms of resistance to QoI fungicides in phytopathogenic fungi |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20resistance%20to%20QoI%20fungicides%20in%20phytopathogenic%20fungi&rft.jtitle=International%20microbiology&rft.au=Fern%C3%A1ndez-Ortu%C3%B1o,%20Dolores&rft.date=2008-03&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1139-6709&rft.eissn=1618-1905&rft_id=info:doi/10.2436/20.1501.01.38&rft_dat=%3Cpubmed_latin%3E18683626%3C/pubmed_latin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c204t-5d00c192c13eb3ab45b23836ba5dc8b9d1b9c976e77ad8096e72cefc317a6fce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/18683626&rfr_iscdi=true |