Loading…

The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry

The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontrac...

Full description

Saved in:
Bibliographic Details
Main Authors: Hans Lischka, Ron Shepard, Thomas Müller, Péter G Szalay, Russell M Pitzer, Adelia JA Aquino, Mayzza M Araújo do Nascimento, Mario Barbatti, Lachlan T Belcher, Jean-Philippe Blaudeau, Itamar Borges, Scott R Brozell, Emily A Carter, Anita Das, Gergely Gidofalvi, Leticia González, William L Hase, Gary Kedziora, Miklos Kertesz, Fábris Kossoski, Francisco BC Machado, Spiridoula Matsika, Silmar A do Monte, Dana Nachtigallová, Reed Nieman, Markus Oppel, Carol A Parish, Felix Plasser, Rene FK Spada, Eric A Stahlberg, Elizete Ventura, David R Yarkony, Zhiyong Zhang
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.