Loading…
A hybrid algorithm for removal of eye blinking artifacts from electroencephalograms
A robust method for removal of artifacts such as eye blinks and electrocardiogram (ECG) from the electroencephalograms (EEGs) has been developed in this paper. The proposed hybrid method fuses support vector machines (SVMs) based classification and blind source separation (BSS) based on independent...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A robust method for removal of artifacts such as eye blinks and electrocardiogram (ECG) from the electroencephalograms (EEGs)
has been developed in this paper. The proposed hybrid method fuses
support vector machines (SVMs) based classification and blind source
separation (BSS) based on independent component analysis (ICA). The
carefully chosen features for the classifier mainly represent the data
higher order statistics. We use the second order blind identification
(SOBI) algorithm to separate the EEG into statistically independent
sources and SVMs to identify the artifact components and thereby to
remove such signals. The remaining independent components are remixed
to reproduce the artifact free EEGs. Objective and subjective results from
the simulation studies show that the algorithm outperforms previously
proposed algorithms. |
---|