Loading…

Measuring handrim wheelchair propulsion in the lab: a critical analysis of stationary ergometers

There are many ways to simulate handrim wheelchair propulsion in the laboratory. Ideally, these would be able to, at least mechanically, simulate field conditions. This narrative review provides an overview of the lab-based equipment used in published research and critically assesses their ability t...

Full description

Saved in:
Bibliographic Details
Main Authors: Rick de Klerk, Riemer Vegter, Vicky Goosey-Tolfrey, Barry Mason, John Lenton, Dirkjan HEJ Veeger, Lucas van der Woude
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There are many ways to simulate handrim wheelchair propulsion in the laboratory. Ideally, these would be able to, at least mechanically, simulate field conditions. This narrative review provides an overview of the lab-based equipment used in published research and critically assesses their ability to simulate and measure wheelchair propulsion performance. A close connection to the field can only be achieved if the instrument can adequately simulate frictional losses and inertia of real-life handrim wheelchair propulsion, while maintaining the ergonomic properties of the wheelchair-user interface. Lab-based testing is either performed on a treadmill or a wheelchair ergometer (WCE). For this study WCEs were divided into three categories: roller, flywheel, and integrated ergometers. In general, treadmills are mechanically realistic, but cannot simulate air drag and acceleration tasks cannot be performed; roller ergometers allow the use of the personal wheelchair, but calibration can be troublesome; flywheel ergometers can be built with commerciallyavailable parts, but inertia is fixed and the personal wheelchair cannot be used; integrated ergometers do not employ the personal wheelchair, but are suited for the implementation of different simulation models and detailed measurements. Lab-based equipment is heterogeneous and there appears to be little consensus on how to simulate field conditions.