Loading…

Linear Coding of Voice Onset Time

Voice onset time (VOT) provides an important auditory cue for recognizing spoken consonant-vowel syllables. Although changes in the neuromagnetic response to consonant-vowel syllables with different VOT have been examined, such experiments have only manipulated VOT with respect to voicing. We utiliz...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cognitive neuroscience 2007-09, Vol.19 (9), p.1476-1487
Main Authors: Frye, Richard E, Fisher, Janet McGraw, Coty, Alexis, Zarella, Melissa, Liederman, Jacqueline, Halgren, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Voice onset time (VOT) provides an important auditory cue for recognizing spoken consonant-vowel syllables. Although changes in the neuromagnetic response to consonant-vowel syllables with different VOT have been examined, such experiments have only manipulated VOT with respect to voicing. We utilized the characteristics of a previously developed asymmetric VOT continuum [Liederman, J., Frye, R. E., McGraw Fisher, J., Greenwood, K., & Alexander, R. A temporally dynamic contextual effect that disrupts voice onset time discrimination of rapidly successive stimuli. , 380–386, 2005] to determine if changes in the prominent M100 neuromagnetic response were linearly modulated by VOT. Eight right-handed, English-speaking, normally developing participants performed a VOT discrimination task during a whole-head neuromagnetic recording. The M100 was identified in the gradiometers overlying the right and left temporal cortices and single dipoles were fit to each M100 waveform. A repeated measures analysis of variance with post hoc contrast test for linear trend was used to determine whether characteristics of the M100 were linearly modulated by VOT. The morphology of the M100 gradiometer waveform and the peak latency of the dipole waveform were linearly modulated by VOT. This modulation was much greater in the left, as compared to the right, hemisphere. The M100 dipole moved in a linear fashion as VOT increased in both hemispheres, but along different axes in each hemisphere. This study suggests that VOT may linearly modulate characteristics of the M100, predominately in the left hemisphere, and suggests that the VOT of consonant-vowel syllables, instead of, or in addition to, voicing, should be examined in future experiments.
ISSN:0898-929X
1530-8898
DOI:10.1162/jocn.2007.19.9.1476