Loading…

A Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

The use of estimation techniques on stochastic models to solve control problems is an emerging paradigm that falls under the rubric of Active Inference (AI) and Control as Inference (CAI). In this work, we use probability propagation on factor graphs to show that various algorithms proposed in the l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022-01, Vol.10, p.15193-15216
Main Authors: Palmieri, Francesco A. N., Pattipati, Krishna R., Gennaro, Giovanni Di, Fioretti, Giovanni, Verolla, Francesco, Buonanno, Amedeo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of estimation techniques on stochastic models to solve control problems is an emerging paradigm that falls under the rubric of Active Inference (AI) and Control as Inference (CAI). In this work, we use probability propagation on factor graphs to show that various algorithms proposed in the literature can be seen as specific composition rules in a factor graph. We show how this unified approach, presented both in probability space and in log of the probability space, provides a very general framework that includes the Sum-product, the Max-product, Dynamic programming and mixed Reward/Entropy criteria-based algorithms. The framework also expands algorithmic design options that lead to new smoother or sharper policy distributions. We propose original recursions such as: a generalized Sum/Max-product algorithm, a Smooth Dynamic programming algorithm and a modified versions of the Reward/Entropy algorithm. The discussion is carried over with reference to a path planning problem where the recursions that arise from various cost functions, although they may appear similar in scope, bear noticeable differences. We provide a comprehensive table of composition rules and a comparison through simulations, first on a synthetic small grid with a single goal with obstacles, and then on a grid extrapolated from a real-world scene with multiple goals and a semantic map.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3148127