Loading…
Empirical likelihood for spatial dynamic panel data models
Spatial dynamic panel data (SDPD) models have received great attention in economics in recent 10 years. Existing approaches for the estimation and test of SDPD models are quasi-maximum likelihood (QML) approach and generalized method of moments (GMM). In this article, we introduce the empirical like...
Saved in:
Published in: | Journal of the Korean Statistical Society 2022, 51(2), , pp.500-525 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spatial dynamic panel data (SDPD) models have received great attention in economics in recent 10 years. Existing approaches for the estimation and test of SDPD models are quasi-maximum likelihood (QML) approach and generalized method of moments (GMM). In this article, we introduce the empirical likelihood (EL) method to the statistical inference for SDPD models. The EL ratio statistics are constructed for the parameters of spatial dynamic panel data models. It is shown that the limiting distributions of the empirical likelihood ratio statistics are chi-squared distributions, which are used to construct confidence regions for the parameters of the models. Simulation results show that the EL based confidence regions outperform the normal approximation based confidence regions. |
---|---|
ISSN: | 1226-3192 2005-2863 |
DOI: | 10.1007/s42952-021-00150-4 |