Loading…

Effect of blade tip pattern on blade load and vibration characteristics of a twin-stage axial flow fan

Focusing on a twin-stage axial fan, this paper investigates the effect of blade tip pattern on blade load and vibration characteristics. Steady simulations are first conducted to quantify the aerodynamic performance of various blade tip patterns. The finite element modeling analysis is performed to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2022, 36(7), , pp.3487-3500
Main Authors: Zhang, Jiankun, Liu, Haihu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Focusing on a twin-stage axial fan, this paper investigates the effect of blade tip pattern on blade load and vibration characteristics. Steady simulations are first conducted to quantify the aerodynamic performance of various blade tip patterns. The finite element modeling analysis is performed to capture blade load and vibration characteristics, and Campbell diagram is introduced to evaluate resonance margin of different blade tip patterns. Results show that for all selected patterns, the first three mode shapes are mainly the bending of blade tip, which results in stress concentration at the blade root, while the last three are the waving in small range. The proposed blade tip patterns not only increase maximum stress and average deformation, but also significantly increase resonance margin near the rated speed. In addition, based on the harmonic response analysis, we find that the stress and amplitude frequency response will be notably altered by blade tip patterns.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-022-0626-4