Loading…

Physics based modelling and analysis of IPMC vibration energy harvester

Advancement in smart materials and decrease in power requirement of electronic devices motivates researchers to use smart materials for energy harvesting applications. In this study, a physics-based modelling approach by considering the effect of convective transport on cation migration and the effe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2022, 36(8), , pp.3983-3993
Main Authors: Patel, Satya Narayan, Mukherjee, Sujoy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Advancement in smart materials and decrease in power requirement of electronic devices motivates researchers to use smart materials for energy harvesting applications. In this study, a physics-based modelling approach by considering the effect of convective transport on cation migration and the effect of local deformation on anion concentration is used to model IPMC based vibration energy harvester and solved with the help of COMSOL Multiphysics 5.5 finite element method. The present harvester model voltage and power output under fixed load resistance, and power output under variable load resistance for both excitation frequencies (2 Hz and 5 Hz) and both excitation amplitudes (3 mm and 5 mm) are analysed by both FEM and experimental results. At 5 Hz and 5 mm excitation amplitude and frequency, the peak voltage is 171.9 mV, and the peak power is 60.48 nW for 2 Hz excitation and 5 mm amplitude of mechanical vibration. According to the findings, physics-based modelling can be utilized to develop and analyse IPMC vibration energy harvesters. It will also be useful for analyzing IPMC-based sensors and actuators.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-022-0720-7