Loading…
Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential
Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones poten...
Saved in:
Published in: | Nuclear engineering and technology 2022, 54(8), , pp.3117-3129 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363 |
container_end_page | 3129 |
container_issue | 8 |
container_start_page | 3117 |
container_title | Nuclear engineering and technology |
container_volume | 54 |
creator | Wang, Zetao Guo, Kailun Wang, Chenglong Zhang, Dalin Tian, Wenxi Qiu, Suizheng Su, Guanghui |
description | Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future. |
doi_str_mv | 10.1016/j.net.2022.02.014 |
format | article |
fullrecord | <record><control><sourceid>elsevier_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10031408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1738573322000869</els_id><doaj_id>oai_doaj_org_article_d17cbcf00e764821b7c971d88fa2688f</doaj_id><sourcerecordid>S1738573322000869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</originalsourceid><addsrcrecordid>eNp9UdtKAzEQDaJgvXyAb3kWtiab7A2fSvFSqQhSwbeQTSYl7TapybbQvzd2xUdhmIFhzpk5cxC6oWRMCS3vVmMH_TgneT4mKSg_QaM8ZzxjRf15ika0YnVWVIydo4sYV4SUnFdkhMyr70DtOhmwPji5sSri2O_0AXuDO_u1sxpHr-1ug43tNhj2cuuD7K13WDqNlXcaXBwa7QHPwTkZdPbiHUS89T243sruCp0Z2UW4_q2X6OPxYTF9zuZvT7PpZJ4pzmmfmZIwCkkFJ02lClOwojGSUoCmKbnhXCcdTVUYIC2vTdLG20ab3DAAxVjJLtHtwOuCEWtlhZf2WJderIOYvC9mgpK0hJM6Dc-GYe3lSmyD3chwOCKODR-WQobeqg5E2qtaZQiBquR1TttKNRXVdW1kXqacuOjApYKPMYD546NE_DgkViI5JH4cEiQF5QlzP2AgfWRvIYioLDgF2gZQfbrC_oP-BhwqmYc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</title><source>ScienceDirect Journals</source><creator>Wang, Zetao ; Guo, Kailun ; Wang, Chenglong ; Zhang, Dalin ; Tian, Wenxi ; Qiu, Suizheng ; Su, Guanghui</creator><creatorcontrib>Wang, Zetao ; Guo, Kailun ; Wang, Chenglong ; Zhang, Dalin ; Tian, Wenxi ; Qiu, Suizheng ; Su, Guanghui</creatorcontrib><description>Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.</description><identifier>ISSN: 1738-5733</identifier><identifier>EISSN: 2234-358X</identifier><identifier>DOI: 10.1016/j.net.2022.02.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Evaporation and condensation ; High-temperature sodium heat pipe ; Lennard-Jones potential ; Molecular dynamics ; Thin liquid sodium film ; 원자력공학</subject><ispartof>Nuclear Engineering and Technology, 2022, 54(8), , pp.3117-3129</ispartof><rights>2022 Korean Nuclear Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</citedby><cites>FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</cites><orcidid>0000-0002-5351-967X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1738573322000869$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002865577$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zetao</creatorcontrib><creatorcontrib>Guo, Kailun</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Tian, Wenxi</creatorcontrib><creatorcontrib>Qiu, Suizheng</creatorcontrib><creatorcontrib>Su, Guanghui</creatorcontrib><title>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</title><title>Nuclear engineering and technology</title><description>Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.</description><subject>Evaporation and condensation</subject><subject>High-temperature sodium heat pipe</subject><subject>Lennard-Jones potential</subject><subject>Molecular dynamics</subject><subject>Thin liquid sodium film</subject><subject>원자력공학</subject><issn>1738-5733</issn><issn>2234-358X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UdtKAzEQDaJgvXyAb3kWtiab7A2fSvFSqQhSwbeQTSYl7TapybbQvzd2xUdhmIFhzpk5cxC6oWRMCS3vVmMH_TgneT4mKSg_QaM8ZzxjRf15ika0YnVWVIydo4sYV4SUnFdkhMyr70DtOhmwPji5sSri2O_0AXuDO_u1sxpHr-1ug43tNhj2cuuD7K13WDqNlXcaXBwa7QHPwTkZdPbiHUS89T243sruCp0Z2UW4_q2X6OPxYTF9zuZvT7PpZJ4pzmmfmZIwCkkFJ02lClOwojGSUoCmKbnhXCcdTVUYIC2vTdLG20ab3DAAxVjJLtHtwOuCEWtlhZf2WJderIOYvC9mgpK0hJM6Dc-GYe3lSmyD3chwOCKODR-WQobeqg5E2qtaZQiBquR1TttKNRXVdW1kXqacuOjApYKPMYD546NE_DgkViI5JH4cEiQF5QlzP2AgfWRvIYioLDgF2gZQfbrC_oP-BhwqmYc</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Wang, Zetao</creator><creator>Guo, Kailun</creator><creator>Wang, Chenglong</creator><creator>Zhang, Dalin</creator><creator>Tian, Wenxi</creator><creator>Qiu, Suizheng</creator><creator>Su, Guanghui</creator><general>Elsevier B.V</general><general>Elsevier</general><general>한국원자력학회</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-5351-967X</orcidid></search><sort><creationdate>202208</creationdate><title>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</title><author>Wang, Zetao ; Guo, Kailun ; Wang, Chenglong ; Zhang, Dalin ; Tian, Wenxi ; Qiu, Suizheng ; Su, Guanghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Evaporation and condensation</topic><topic>High-temperature sodium heat pipe</topic><topic>Lennard-Jones potential</topic><topic>Molecular dynamics</topic><topic>Thin liquid sodium film</topic><topic>원자력공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zetao</creatorcontrib><creatorcontrib>Guo, Kailun</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Tian, Wenxi</creatorcontrib><creatorcontrib>Qiu, Suizheng</creatorcontrib><creatorcontrib>Su, Guanghui</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zetao</au><au>Guo, Kailun</au><au>Wang, Chenglong</au><au>Zhang, Dalin</au><au>Tian, Wenxi</au><au>Qiu, Suizheng</au><au>Su, Guanghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</atitle><jtitle>Nuclear engineering and technology</jtitle><date>2022-08</date><risdate>2022</risdate><volume>54</volume><issue>8</issue><spage>3117</spage><epage>3129</epage><pages>3117-3129</pages><issn>1738-5733</issn><eissn>2234-358X</eissn><abstract>Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.net.2022.02.014</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5351-967X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-5733 |
ispartof | Nuclear Engineering and Technology, 2022, 54(8), , pp.3117-3129 |
issn | 1738-5733 2234-358X |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_10031408 |
source | ScienceDirect Journals |
subjects | Evaporation and condensation High-temperature sodium heat pipe Lennard-Jones potential Molecular dynamics Thin liquid sodium film 원자력공학 |
title | Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20study%20of%20liquid%20sodium%20film%20evaporation%20and%20condensation%20by%20Lennard-Jones%20potential&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Wang,%20Zetao&rft.date=2022-08&rft.volume=54&rft.issue=8&rft.spage=3117&rft.epage=3129&rft.pages=3117-3129&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/10.1016/j.net.2022.02.014&rft_dat=%3Celsevier_nrf_k%3ES1738573322000869%3C/elsevier_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |