Loading…

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones poten...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology 2022, 54(8), , pp.3117-3129
Main Authors: Wang, Zetao, Guo, Kailun, Wang, Chenglong, Zhang, Dalin, Tian, Wenxi, Qiu, Suizheng, Su, Guanghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363
cites cdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363
container_end_page 3129
container_issue 8
container_start_page 3117
container_title Nuclear engineering and technology
container_volume 54
creator Wang, Zetao
Guo, Kailun
Wang, Chenglong
Zhang, Dalin
Tian, Wenxi
Qiu, Suizheng
Su, Guanghui
description Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.
doi_str_mv 10.1016/j.net.2022.02.014
format article
fullrecord <record><control><sourceid>elsevier_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10031408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1738573322000869</els_id><doaj_id>oai_doaj_org_article_d17cbcf00e764821b7c971d88fa2688f</doaj_id><sourcerecordid>S1738573322000869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</originalsourceid><addsrcrecordid>eNp9UdtKAzEQDaJgvXyAb3kWtiab7A2fSvFSqQhSwbeQTSYl7TapybbQvzd2xUdhmIFhzpk5cxC6oWRMCS3vVmMH_TgneT4mKSg_QaM8ZzxjRf15ika0YnVWVIydo4sYV4SUnFdkhMyr70DtOhmwPji5sSri2O_0AXuDO_u1sxpHr-1ug43tNhj2cuuD7K13WDqNlXcaXBwa7QHPwTkZdPbiHUS89T243sruCp0Z2UW4_q2X6OPxYTF9zuZvT7PpZJ4pzmmfmZIwCkkFJ02lClOwojGSUoCmKbnhXCcdTVUYIC2vTdLG20ab3DAAxVjJLtHtwOuCEWtlhZf2WJderIOYvC9mgpK0hJM6Dc-GYe3lSmyD3chwOCKODR-WQobeqg5E2qtaZQiBquR1TttKNRXVdW1kXqacuOjApYKPMYD546NE_DgkViI5JH4cEiQF5QlzP2AgfWRvIYioLDgF2gZQfbrC_oP-BhwqmYc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</title><source>ScienceDirect Journals</source><creator>Wang, Zetao ; Guo, Kailun ; Wang, Chenglong ; Zhang, Dalin ; Tian, Wenxi ; Qiu, Suizheng ; Su, Guanghui</creator><creatorcontrib>Wang, Zetao ; Guo, Kailun ; Wang, Chenglong ; Zhang, Dalin ; Tian, Wenxi ; Qiu, Suizheng ; Su, Guanghui</creatorcontrib><description>Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.</description><identifier>ISSN: 1738-5733</identifier><identifier>EISSN: 2234-358X</identifier><identifier>DOI: 10.1016/j.net.2022.02.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Evaporation and condensation ; High-temperature sodium heat pipe ; Lennard-Jones potential ; Molecular dynamics ; Thin liquid sodium film ; 원자력공학</subject><ispartof>Nuclear Engineering and Technology, 2022, 54(8), , pp.3117-3129</ispartof><rights>2022 Korean Nuclear Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</citedby><cites>FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</cites><orcidid>0000-0002-5351-967X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1738573322000869$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002865577$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zetao</creatorcontrib><creatorcontrib>Guo, Kailun</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Tian, Wenxi</creatorcontrib><creatorcontrib>Qiu, Suizheng</creatorcontrib><creatorcontrib>Su, Guanghui</creatorcontrib><title>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</title><title>Nuclear engineering and technology</title><description>Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.</description><subject>Evaporation and condensation</subject><subject>High-temperature sodium heat pipe</subject><subject>Lennard-Jones potential</subject><subject>Molecular dynamics</subject><subject>Thin liquid sodium film</subject><subject>원자력공학</subject><issn>1738-5733</issn><issn>2234-358X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UdtKAzEQDaJgvXyAb3kWtiab7A2fSvFSqQhSwbeQTSYl7TapybbQvzd2xUdhmIFhzpk5cxC6oWRMCS3vVmMH_TgneT4mKSg_QaM8ZzxjRf15ika0YnVWVIydo4sYV4SUnFdkhMyr70DtOhmwPji5sSri2O_0AXuDO_u1sxpHr-1ug43tNhj2cuuD7K13WDqNlXcaXBwa7QHPwTkZdPbiHUS89T243sruCp0Z2UW4_q2X6OPxYTF9zuZvT7PpZJ4pzmmfmZIwCkkFJ02lClOwojGSUoCmKbnhXCcdTVUYIC2vTdLG20ab3DAAxVjJLtHtwOuCEWtlhZf2WJderIOYvC9mgpK0hJM6Dc-GYe3lSmyD3chwOCKODR-WQobeqg5E2qtaZQiBquR1TttKNRXVdW1kXqacuOjApYKPMYD546NE_DgkViI5JH4cEiQF5QlzP2AgfWRvIYioLDgF2gZQfbrC_oP-BhwqmYc</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Wang, Zetao</creator><creator>Guo, Kailun</creator><creator>Wang, Chenglong</creator><creator>Zhang, Dalin</creator><creator>Tian, Wenxi</creator><creator>Qiu, Suizheng</creator><creator>Su, Guanghui</creator><general>Elsevier B.V</general><general>Elsevier</general><general>한국원자력학회</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-5351-967X</orcidid></search><sort><creationdate>202208</creationdate><title>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</title><author>Wang, Zetao ; Guo, Kailun ; Wang, Chenglong ; Zhang, Dalin ; Tian, Wenxi ; Qiu, Suizheng ; Su, Guanghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Evaporation and condensation</topic><topic>High-temperature sodium heat pipe</topic><topic>Lennard-Jones potential</topic><topic>Molecular dynamics</topic><topic>Thin liquid sodium film</topic><topic>원자력공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zetao</creatorcontrib><creatorcontrib>Guo, Kailun</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Tian, Wenxi</creatorcontrib><creatorcontrib>Qiu, Suizheng</creatorcontrib><creatorcontrib>Su, Guanghui</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zetao</au><au>Guo, Kailun</au><au>Wang, Chenglong</au><au>Zhang, Dalin</au><au>Tian, Wenxi</au><au>Qiu, Suizheng</au><au>Su, Guanghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential</atitle><jtitle>Nuclear engineering and technology</jtitle><date>2022-08</date><risdate>2022</risdate><volume>54</volume><issue>8</issue><spage>3117</spage><epage>3129</epage><pages>3117-3129</pages><issn>1738-5733</issn><eissn>2234-358X</eissn><abstract>Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520–600 K (the startup of the heat pipe), the h has approached 5–6 W m−2 K−1 while liquid film thickness is in 11–13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.net.2022.02.014</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5351-967X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1738-5733
ispartof Nuclear Engineering and Technology, 2022, 54(8), , pp.3117-3129
issn 1738-5733
2234-358X
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10031408
source ScienceDirect Journals
subjects Evaporation and condensation
High-temperature sodium heat pipe
Lennard-Jones potential
Molecular dynamics
Thin liquid sodium film
원자력공학
title Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20study%20of%20liquid%20sodium%20film%20evaporation%20and%20condensation%20by%20Lennard-Jones%20potential&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Wang,%20Zetao&rft.date=2022-08&rft.volume=54&rft.issue=8&rft.spage=3117&rft.epage=3129&rft.pages=3117-3129&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/10.1016/j.net.2022.02.014&rft_dat=%3Celsevier_nrf_k%3ES1738573322000869%3C/elsevier_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-f6031e2024097c5f5359fa11ee9964f44d173975fe0b48f3584b9df2f3eec3363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true