Loading…
Implementation and benchmarking of the local weight window generation function for OpenMC
OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR metho...
Saved in:
Published in: | Nuclear engineering and technology 2022, 54(10), , pp.3803-3810 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2022.04.021 |