Loading…

Implementation and benchmarking of the local weight window generation function for OpenMC

OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR metho...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology 2022, 54(10), , pp.3803-3810
Main Authors: Hu, Yuan, Yan, Sha, Qiu, Yuefeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-54fa62b31016ec6903ca421d742349d0c050f27f748b9278fca1dc77e842e9ac3
cites cdi_FETCH-LOGICAL-c398t-54fa62b31016ec6903ca421d742349d0c050f27f748b9278fca1dc77e842e9ac3
container_end_page 3810
container_issue 10
container_start_page 3803
container_title Nuclear engineering and technology
container_volume 54
creator Hu, Yuan
Yan, Sha
Qiu, Yuefeng
description OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.
doi_str_mv 10.1016/j.net.2022.04.021
format article
fullrecord <record><control><sourceid>elsevier_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10052514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S173857332200242X</els_id><doaj_id>oai_doaj_org_article_4c4b6a64b436469fbc4448a03ca3c343</doaj_id><sourcerecordid>S173857332200242X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-54fa62b31016ec6903ca421d742349d0c050f27f748b9278fca1dc77e842e9ac3</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpIdu0HyA3nQt29Wds2fQUljZZSAmUFNqTkOWRV7teaZHdLP320a5LjzmNEPN7vDePkBvOSs54_XlXBpxLwYQoGZRM8DdkJYSEQlbNr7dkxZVsikpJeUXeT9OOsRpAsRX5vTkcRzxgmM3sY6Am9LTDYLcHk_Y-DDQ6Om-RjtGakZ7QD9uZnnzo44kOGDAtmPsT7PKIiT4eMXxffyDvnBkn_PhvXpOf374-re-Lh8e7zfr2obCybeaiAmdq0clzCrR1y6Q1IHivILtve2ZZxZxQTkHTtUI1zhreW6WwAYGtsfKafFp0Q3J6b72Oxl_mEPU-6dsfTxvNGatExSEvb5blPpqdPiafY_69EJePmAZt0uztiBosdLWpoQNZQ926zgJAY87-pJUgsxZftGyK05TQ_dfjTJ_j6J3OpehzKZqBzqVk5svCYL7Is8ekJ-vzubH3Ce2cXfhX6Bd-SJQG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implementation and benchmarking of the local weight window generation function for OpenMC</title><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Hu, Yuan ; Yan, Sha ; Qiu, Yuefeng</creator><creatorcontrib>Hu, Yuan ; Yan, Sha ; Qiu, Yuefeng</creatorcontrib><description>OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.</description><identifier>ISSN: 1738-5733</identifier><identifier>EISSN: 2234-358X</identifier><identifier>DOI: 10.1016/j.net.2022.04.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Local variance reduction ; Monte Carlo ; Neutronics ; OpenMC ; Weight window generator ; 원자력공학</subject><ispartof>Nuclear Engineering and Technology, 2022, 54(10), , pp.3803-3810</ispartof><rights>2022 Korean Nuclear Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-54fa62b31016ec6903ca421d742349d0c050f27f748b9278fca1dc77e842e9ac3</citedby><cites>FETCH-LOGICAL-c398t-54fa62b31016ec6903ca421d742349d0c050f27f748b9278fca1dc77e842e9ac3</cites><orcidid>0000-0002-1942-5071 ; 0000-0002-4380-9382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S173857332200242X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002883620$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yuan</creatorcontrib><creatorcontrib>Yan, Sha</creatorcontrib><creatorcontrib>Qiu, Yuefeng</creatorcontrib><title>Implementation and benchmarking of the local weight window generation function for OpenMC</title><title>Nuclear engineering and technology</title><description>OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.</description><subject>Local variance reduction</subject><subject>Monte Carlo</subject><subject>Neutronics</subject><subject>OpenMC</subject><subject>Weight window generator</subject><subject>원자력공학</subject><issn>1738-5733</issn><issn>2234-358X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9r3DAQxUVpIdu0HyA3nQt29Wds2fQUljZZSAmUFNqTkOWRV7teaZHdLP320a5LjzmNEPN7vDePkBvOSs54_XlXBpxLwYQoGZRM8DdkJYSEQlbNr7dkxZVsikpJeUXeT9OOsRpAsRX5vTkcRzxgmM3sY6Am9LTDYLcHk_Y-DDQ6Om-RjtGakZ7QD9uZnnzo44kOGDAtmPsT7PKIiT4eMXxffyDvnBkn_PhvXpOf374-re-Lh8e7zfr2obCybeaiAmdq0clzCrR1y6Q1IHivILtve2ZZxZxQTkHTtUI1zhreW6WwAYGtsfKafFp0Q3J6b72Oxl_mEPU-6dsfTxvNGatExSEvb5blPpqdPiafY_69EJePmAZt0uztiBosdLWpoQNZQ926zgJAY87-pJUgsxZftGyK05TQ_dfjTJ_j6J3OpehzKZqBzqVk5svCYL7Is8ekJ-vzubH3Ce2cXfhX6Bd-SJQG</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Hu, Yuan</creator><creator>Yan, Sha</creator><creator>Qiu, Yuefeng</creator><general>Elsevier B.V</general><general>Elsevier</general><general>한국원자력학회</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-1942-5071</orcidid><orcidid>https://orcid.org/0000-0002-4380-9382</orcidid></search><sort><creationdate>20221001</creationdate><title>Implementation and benchmarking of the local weight window generation function for OpenMC</title><author>Hu, Yuan ; Yan, Sha ; Qiu, Yuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-54fa62b31016ec6903ca421d742349d0c050f27f748b9278fca1dc77e842e9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Local variance reduction</topic><topic>Monte Carlo</topic><topic>Neutronics</topic><topic>OpenMC</topic><topic>Weight window generator</topic><topic>원자력공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yuan</creatorcontrib><creatorcontrib>Yan, Sha</creatorcontrib><creatorcontrib>Qiu, Yuefeng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yuan</au><au>Yan, Sha</au><au>Qiu, Yuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and benchmarking of the local weight window generation function for OpenMC</atitle><jtitle>Nuclear engineering and technology</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>54</volume><issue>10</issue><spage>3803</spage><epage>3810</epage><pages>3803-3810</pages><issn>1738-5733</issn><eissn>2234-358X</eissn><abstract>OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.net.2022.04.021</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1942-5071</orcidid><orcidid>https://orcid.org/0000-0002-4380-9382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1738-5733
ispartof Nuclear Engineering and Technology, 2022, 54(10), , pp.3803-3810
issn 1738-5733
2234-358X
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10052514
source ScienceDirect - Connect here FIRST to enable access
subjects Local variance reduction
Monte Carlo
Neutronics
OpenMC
Weight window generator
원자력공학
title Implementation and benchmarking of the local weight window generation function for OpenMC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20benchmarking%20of%20the%20local%20weight%20window%20generation%20function%20for%20OpenMC&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Hu,%20Yuan&rft.date=2022-10-01&rft.volume=54&rft.issue=10&rft.spage=3803&rft.epage=3810&rft.pages=3803-3810&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/10.1016/j.net.2022.04.021&rft_dat=%3Celsevier_nrf_k%3ES173857332200242X%3C/elsevier_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-54fa62b31016ec6903ca421d742349d0c050f27f748b9278fca1dc77e842e9ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true