Loading…

Boiling heat transfer characteristics of bionic flower bud structure microchannels

In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours und...

Full description

Saved in:
Bibliographic Details
Published in:The Korean journal of chemical engineering 2022, 39(12), 273, pp.3246-3260
Main Authors: Tang, Zhibo, Wang, Chengchao, Qi, Cong, Wang, Yuwei, Chen, Lanqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443
cites cdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443
container_end_page 3260
container_issue 12
container_start_page 3246
container_title The Korean journal of chemical engineering
container_volume 39
creator Tang, Zhibo
Wang, Chengchao
Qi, Cong
Wang, Yuwei
Chen, Lanqi
description In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.
doi_str_mv 10.1007/s11814-022-1256-3
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10074628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747038645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWD_-AG8L3oTVzOxmsz3W4kehIJR6DtmYtGm3SU12Ef97067gycPwYPi9x8wj5AboPVDKHyJADWVOEXNAVuXFCRnBmLOcI9JTMqKHJQCwc3IR44ZSxiqkI7J49La1bpWtteyyLkgXjQ6ZWssgVaeDjZ1VMfMma6x3VmWm9V8JaPqPLHahV10fdLazKvjkcU638YqcGdlGff2rl-T9-Wk5fc3nby-z6WSeK6yhy2scA691JanUnBpKCwZYGWa4MqqhJZZ1wYo0TIOCWgNUFTJENpYNU2VZXJK7IdcFI7bKCi_tUVdebIOYLJYzceimrLBO8O0A74P_7HXsxMb3waX7BPKS06KuSpYoGKj0ToxBG7EPdifDdwo6ZomhZ5F6FoeeRZE8OHhiYt1Kh7_k_00_Nh9-dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747038645</pqid></control><display><type>article</type><title>Boiling heat transfer characteristics of bionic flower bud structure microchannels</title><source>Springer Nature</source><creator>Tang, Zhibo ; Wang, Chengchao ; Qi, Cong ; Wang, Yuwei ; Chen, Lanqi</creator><creatorcontrib>Tang, Zhibo ; Wang, Chengchao ; Qi, Cong ; Wang, Yuwei ; Chen, Lanqi</creatorcontrib><description>In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.</description><identifier>ISSN: 0256-1115</identifier><identifier>EISSN: 1975-7220</identifier><identifier>DOI: 10.1007/s11814-022-1256-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bionics ; Biotechnology ; Boiling ; Boundary layers ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Flowers ; Heat transfer ; Industrial Chemistry/Chemical Engineering ; Mass transfer ; Materials Science ; Microchannels ; Phase distribution ; Transport Phenomena ; Vapor phases ; Vaporization ; 화학공학</subject><ispartof>Korean Journal of Chemical Engineering, 2022, 39(12), 273, pp.3246-3260</ispartof><rights>Korean Institute of Chemical Engineering (KIChE) 2022</rights><rights>Korean Institute of Chemical Engineering (KIChE) 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</citedby><cites>FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002899338$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Zhibo</creatorcontrib><creatorcontrib>Wang, Chengchao</creatorcontrib><creatorcontrib>Qi, Cong</creatorcontrib><creatorcontrib>Wang, Yuwei</creatorcontrib><creatorcontrib>Chen, Lanqi</creatorcontrib><title>Boiling heat transfer characteristics of bionic flower bud structure microchannels</title><title>The Korean journal of chemical engineering</title><addtitle>Korean J. Chem. Eng</addtitle><description>In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.</description><subject>Bionics</subject><subject>Biotechnology</subject><subject>Boiling</subject><subject>Boundary layers</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Flowers</subject><subject>Heat transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Microchannels</subject><subject>Phase distribution</subject><subject>Transport Phenomena</subject><subject>Vapor phases</subject><subject>Vaporization</subject><subject>화학공학</subject><issn>0256-1115</issn><issn>1975-7220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWD_-AG8L3oTVzOxmsz3W4kehIJR6DtmYtGm3SU12Ef97067gycPwYPi9x8wj5AboPVDKHyJADWVOEXNAVuXFCRnBmLOcI9JTMqKHJQCwc3IR44ZSxiqkI7J49La1bpWtteyyLkgXjQ6ZWssgVaeDjZ1VMfMma6x3VmWm9V8JaPqPLHahV10fdLazKvjkcU638YqcGdlGff2rl-T9-Wk5fc3nby-z6WSeK6yhy2scA691JanUnBpKCwZYGWa4MqqhJZZ1wYo0TIOCWgNUFTJENpYNU2VZXJK7IdcFI7bKCi_tUVdebIOYLJYzceimrLBO8O0A74P_7HXsxMb3waX7BPKS06KuSpYoGKj0ToxBG7EPdifDdwo6ZomhZ5F6FoeeRZE8OHhiYt1Kh7_k_00_Nh9-dw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Tang, Zhibo</creator><creator>Wang, Chengchao</creator><creator>Qi, Cong</creator><creator>Wang, Yuwei</creator><creator>Chen, Lanqi</creator><general>Springer US</general><general>Springer Nature B.V</general><general>한국화학공학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope></search><sort><creationdate>20221201</creationdate><title>Boiling heat transfer characteristics of bionic flower bud structure microchannels</title><author>Tang, Zhibo ; Wang, Chengchao ; Qi, Cong ; Wang, Yuwei ; Chen, Lanqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bionics</topic><topic>Biotechnology</topic><topic>Boiling</topic><topic>Boundary layers</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Flowers</topic><topic>Heat transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Microchannels</topic><topic>Phase distribution</topic><topic>Transport Phenomena</topic><topic>Vapor phases</topic><topic>Vaporization</topic><topic>화학공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhibo</creatorcontrib><creatorcontrib>Wang, Chengchao</creatorcontrib><creatorcontrib>Qi, Cong</creatorcontrib><creatorcontrib>Wang, Yuwei</creatorcontrib><creatorcontrib>Chen, Lanqi</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index (Open Access)</collection><jtitle>The Korean journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhibo</au><au>Wang, Chengchao</au><au>Qi, Cong</au><au>Wang, Yuwei</au><au>Chen, Lanqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boiling heat transfer characteristics of bionic flower bud structure microchannels</atitle><jtitle>The Korean journal of chemical engineering</jtitle><stitle>Korean J. Chem. Eng</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>39</volume><issue>12</issue><spage>3246</spage><epage>3260</epage><pages>3246-3260</pages><issn>0256-1115</issn><eissn>1975-7220</eissn><abstract>In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11814-022-1256-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1115
ispartof Korean Journal of Chemical Engineering, 2022, 39(12), 273, pp.3246-3260
issn 0256-1115
1975-7220
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10074628
source Springer Nature
subjects Bionics
Biotechnology
Boiling
Boundary layers
Catalysis
Chemistry
Chemistry and Materials Science
Flowers
Heat transfer
Industrial Chemistry/Chemical Engineering
Mass transfer
Materials Science
Microchannels
Phase distribution
Transport Phenomena
Vapor phases
Vaporization
화학공학
title Boiling heat transfer characteristics of bionic flower bud structure microchannels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boiling%20heat%20transfer%20characteristics%20of%20bionic%20flower%20bud%20structure%20microchannels&rft.jtitle=The%20Korean%20journal%20of%20chemical%20engineering&rft.au=Tang,%20Zhibo&rft.date=2022-12-01&rft.volume=39&rft.issue=12&rft.spage=3246&rft.epage=3260&rft.pages=3246-3260&rft.issn=0256-1115&rft.eissn=1975-7220&rft_id=info:doi/10.1007/s11814-022-1256-3&rft_dat=%3Cproquest_nrf_k%3E2747038645%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747038645&rft_id=info:pmid/&rfr_iscdi=true