Loading…
Boiling heat transfer characteristics of bionic flower bud structure microchannels
In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours und...
Saved in:
Published in: | The Korean journal of chemical engineering 2022, 39(12), 273, pp.3246-3260 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443 |
container_end_page | 3260 |
container_issue | 12 |
container_start_page | 3246 |
container_title | The Korean journal of chemical engineering |
container_volume | 39 |
creator | Tang, Zhibo Wang, Chengchao Qi, Cong Wang, Yuwei Chen, Lanqi |
description | In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%. |
doi_str_mv | 10.1007/s11814-022-1256-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10074628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747038645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWD_-AG8L3oTVzOxmsz3W4kehIJR6DtmYtGm3SU12Ef97067gycPwYPi9x8wj5AboPVDKHyJADWVOEXNAVuXFCRnBmLOcI9JTMqKHJQCwc3IR44ZSxiqkI7J49La1bpWtteyyLkgXjQ6ZWssgVaeDjZ1VMfMma6x3VmWm9V8JaPqPLHahV10fdLazKvjkcU638YqcGdlGff2rl-T9-Wk5fc3nby-z6WSeK6yhy2scA691JanUnBpKCwZYGWa4MqqhJZZ1wYo0TIOCWgNUFTJENpYNU2VZXJK7IdcFI7bKCi_tUVdebIOYLJYzceimrLBO8O0A74P_7HXsxMb3waX7BPKS06KuSpYoGKj0ToxBG7EPdifDdwo6ZomhZ5F6FoeeRZE8OHhiYt1Kh7_k_00_Nh9-dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747038645</pqid></control><display><type>article</type><title>Boiling heat transfer characteristics of bionic flower bud structure microchannels</title><source>Springer Nature</source><creator>Tang, Zhibo ; Wang, Chengchao ; Qi, Cong ; Wang, Yuwei ; Chen, Lanqi</creator><creatorcontrib>Tang, Zhibo ; Wang, Chengchao ; Qi, Cong ; Wang, Yuwei ; Chen, Lanqi</creatorcontrib><description>In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.</description><identifier>ISSN: 0256-1115</identifier><identifier>EISSN: 1975-7220</identifier><identifier>DOI: 10.1007/s11814-022-1256-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bionics ; Biotechnology ; Boiling ; Boundary layers ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Flowers ; Heat transfer ; Industrial Chemistry/Chemical Engineering ; Mass transfer ; Materials Science ; Microchannels ; Phase distribution ; Transport Phenomena ; Vapor phases ; Vaporization ; 화학공학</subject><ispartof>Korean Journal of Chemical Engineering, 2022, 39(12), 273, pp.3246-3260</ispartof><rights>Korean Institute of Chemical Engineering (KIChE) 2022</rights><rights>Korean Institute of Chemical Engineering (KIChE) 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</citedby><cites>FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002899338$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Zhibo</creatorcontrib><creatorcontrib>Wang, Chengchao</creatorcontrib><creatorcontrib>Qi, Cong</creatorcontrib><creatorcontrib>Wang, Yuwei</creatorcontrib><creatorcontrib>Chen, Lanqi</creatorcontrib><title>Boiling heat transfer characteristics of bionic flower bud structure microchannels</title><title>The Korean journal of chemical engineering</title><addtitle>Korean J. Chem. Eng</addtitle><description>In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.</description><subject>Bionics</subject><subject>Biotechnology</subject><subject>Boiling</subject><subject>Boundary layers</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Flowers</subject><subject>Heat transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Microchannels</subject><subject>Phase distribution</subject><subject>Transport Phenomena</subject><subject>Vapor phases</subject><subject>Vaporization</subject><subject>화학공학</subject><issn>0256-1115</issn><issn>1975-7220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWD_-AG8L3oTVzOxmsz3W4kehIJR6DtmYtGm3SU12Ef97067gycPwYPi9x8wj5AboPVDKHyJADWVOEXNAVuXFCRnBmLOcI9JTMqKHJQCwc3IR44ZSxiqkI7J49La1bpWtteyyLkgXjQ6ZWssgVaeDjZ1VMfMma6x3VmWm9V8JaPqPLHahV10fdLazKvjkcU638YqcGdlGff2rl-T9-Wk5fc3nby-z6WSeK6yhy2scA691JanUnBpKCwZYGWa4MqqhJZZ1wYo0TIOCWgNUFTJENpYNU2VZXJK7IdcFI7bKCi_tUVdebIOYLJYzceimrLBO8O0A74P_7HXsxMb3waX7BPKS06KuSpYoGKj0ToxBG7EPdifDdwo6ZomhZ5F6FoeeRZE8OHhiYt1Kh7_k_00_Nh9-dw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Tang, Zhibo</creator><creator>Wang, Chengchao</creator><creator>Qi, Cong</creator><creator>Wang, Yuwei</creator><creator>Chen, Lanqi</creator><general>Springer US</general><general>Springer Nature B.V</general><general>한국화학공학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope></search><sort><creationdate>20221201</creationdate><title>Boiling heat transfer characteristics of bionic flower bud structure microchannels</title><author>Tang, Zhibo ; Wang, Chengchao ; Qi, Cong ; Wang, Yuwei ; Chen, Lanqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bionics</topic><topic>Biotechnology</topic><topic>Boiling</topic><topic>Boundary layers</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Flowers</topic><topic>Heat transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Microchannels</topic><topic>Phase distribution</topic><topic>Transport Phenomena</topic><topic>Vapor phases</topic><topic>Vaporization</topic><topic>화학공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhibo</creatorcontrib><creatorcontrib>Wang, Chengchao</creatorcontrib><creatorcontrib>Qi, Cong</creatorcontrib><creatorcontrib>Wang, Yuwei</creatorcontrib><creatorcontrib>Chen, Lanqi</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index (Open Access)</collection><jtitle>The Korean journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhibo</au><au>Wang, Chengchao</au><au>Qi, Cong</au><au>Wang, Yuwei</au><au>Chen, Lanqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boiling heat transfer characteristics of bionic flower bud structure microchannels</atitle><jtitle>The Korean journal of chemical engineering</jtitle><stitle>Korean J. Chem. Eng</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>39</volume><issue>12</issue><spage>3246</spage><epage>3260</epage><pages>3246-3260</pages><issn>0256-1115</issn><eissn>1975-7220</eissn><abstract>In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11814-022-1256-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1115 |
ispartof | Korean Journal of Chemical Engineering, 2022, 39(12), 273, pp.3246-3260 |
issn | 0256-1115 1975-7220 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_10074628 |
source | Springer Nature |
subjects | Bionics Biotechnology Boiling Boundary layers Catalysis Chemistry Chemistry and Materials Science Flowers Heat transfer Industrial Chemistry/Chemical Engineering Mass transfer Materials Science Microchannels Phase distribution Transport Phenomena Vapor phases Vaporization 화학공학 |
title | Boiling heat transfer characteristics of bionic flower bud structure microchannels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boiling%20heat%20transfer%20characteristics%20of%20bionic%20flower%20bud%20structure%20microchannels&rft.jtitle=The%20Korean%20journal%20of%20chemical%20engineering&rft.au=Tang,%20Zhibo&rft.date=2022-12-01&rft.volume=39&rft.issue=12&rft.spage=3246&rft.epage=3260&rft.pages=3246-3260&rft.issn=0256-1115&rft.eissn=1975-7220&rft_id=info:doi/10.1007/s11814-022-1256-3&rft_dat=%3Cproquest_nrf_k%3E2747038645%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-829178e6a0ae70f0035126f5f7cfcb042483538355e1c18e1166252259ab5c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747038645&rft_id=info:pmid/&rfr_iscdi=true |