Loading…

Parameter Sensitivity Study on Static and Dynamic Mechanical Properties of the Spatial Y-shaped Tied Arch Bridge

The spatial Y-shaped tied arch bridge is a rare form of innovative bridge on arch bridges around the world. It has important reference significance for the design and construction of bridge engineering worldwide. This arch bridge is novel in design and adopts single and double arch ribs combined str...

Full description

Saved in:
Bibliographic Details
Published in:International journal of steel structures 2023, 23(2), , pp.458-479
Main Authors: Sun, Jianpeng, Tan, Zihan, Zhang, Jiaju, Sun, Wenwu, Zhu, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spatial Y-shaped tied arch bridge is a rare form of innovative bridge on arch bridges around the world. It has important reference significance for the design and construction of bridge engineering worldwide. This arch bridge is novel in design and adopts single and double arch ribs combined structure. However, as a novel bridge type, its force situation is indetermination, so it is very important to study its mechanical properties and parameter sensitivity. In order to study the mechanical properties of the spatial Y-shaped tied arch bridge and the influence of structural parameters, this paper takes a spatial Y-shaped tied arch bridge under construction in China as the research object. The finite element software MIDAS Civil is used to establish the bridge model. The finite element model is used to analyze the static and dynamic performance of the spatial Y-shaped tied arch bridge under the use stage and the mechanical change trend under the influence of different rise-span ratios and double arch bifurcation angles. The results of single arch rib and double arch rib under constant load and live load are compared under different structural parameters in this paper, and the parameter sensitivity analysis of statics and dynamics is carried out. These analyses provide the adjustment basis and design reference for the design of the special-shaped arch bridge in the future.
ISSN:1598-2351
2093-6311
DOI:10.1007/s13296-022-00705-z