Loading…
Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation
We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propa...
Saved in:
Published in: | Current applied physics 2016, 16(9), , pp.1015-1025 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703 |
container_end_page | 1025 |
container_issue | 9 |
container_start_page | 1015 |
container_title | Current applied physics |
container_volume | 16 |
creator | Ghaffarian, Hadi Karimi Taheri, Ali Ryu, Seunghwa Kang, Keonwook |
description | We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite.
•MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking. |
doi_str_mv | 10.1016/j.cap.2016.05.024 |
format | article |
fullrecord | <record><control><sourceid>elsevier_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_102666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567173916301432</els_id><sourcerecordid>S1567173916301432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxZeSQhM3H6A3HXvZjbTSSuv0ZELzB0wLxT2L8eyoyPFKi7Qu2J8-ctxzT_MYfu8N86rqi-CN4ELf7RqEqWmLbHjX8FZ9qK5Fb_paaNNdFd1pUwsjl5-qm5x3vICKq-vq9ANC9GGgMMPsY2B5PgxHFh1DGsvSz8SyPxGDMLCZxokSzIdEjJwjnDPzgYUSgXGcYj7TE0HaF3HPVmyMe8LDHhIbjgFGj7mEjWVxPvW5-uhgn-n231xUvx-_bx6e6_XPp5eH1bpGaeRcIzet6kBzDWqQEo3jnMOSOqG2qpcKnZR93wOBU61ANRAa0cKS9xL11nC5qL5eckNy9hW9jeDf559oX5Nd_dq8WMFbrXVBxQXFFHNO5OyU_AjpWAB77tnubOnZnnu2vLOl5-L5dvFQ-eGvp2QzegpIg0-lITtE_x_3GyjWiCY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</title><source>ScienceDirect Journals</source><creator>Ghaffarian, Hadi ; Karimi Taheri, Ali ; Ryu, Seunghwa ; Kang, Keonwook</creator><creatorcontrib>Ghaffarian, Hadi ; Karimi Taheri, Ali ; Ryu, Seunghwa ; Kang, Keonwook</creatorcontrib><description>We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite.
•MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking.</description><identifier>ISSN: 1567-1739</identifier><identifier>EISSN: 1878-1675</identifier><identifier>DOI: 10.1016/j.cap.2016.05.024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cementite size effect ; Dislocations blocking ; Molecular dynamics simulation ; Nanocomposite pearlite ; Nanoindentation ; 물리학</subject><ispartof>Current Applied Physics, 2016, 16(9), , pp.1015-1025</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</citedby><cites>FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</cites><orcidid>0000-0001-9516-5809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002144868$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaffarian, Hadi</creatorcontrib><creatorcontrib>Karimi Taheri, Ali</creatorcontrib><creatorcontrib>Ryu, Seunghwa</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><title>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</title><title>Current applied physics</title><description>We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite.
•MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking.</description><subject>Cementite size effect</subject><subject>Dislocations blocking</subject><subject>Molecular dynamics simulation</subject><subject>Nanocomposite pearlite</subject><subject>Nanoindentation</subject><subject>물리학</subject><issn>1567-1739</issn><issn>1878-1675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxZeSQhM3H6A3HXvZjbTSSuv0ZELzB0wLxT2L8eyoyPFKi7Qu2J8-ctxzT_MYfu8N86rqi-CN4ELf7RqEqWmLbHjX8FZ9qK5Fb_paaNNdFd1pUwsjl5-qm5x3vICKq-vq9ANC9GGgMMPsY2B5PgxHFh1DGsvSz8SyPxGDMLCZxokSzIdEjJwjnDPzgYUSgXGcYj7TE0HaF3HPVmyMe8LDHhIbjgFGj7mEjWVxPvW5-uhgn-n231xUvx-_bx6e6_XPp5eH1bpGaeRcIzet6kBzDWqQEo3jnMOSOqG2qpcKnZR93wOBU61ANRAa0cKS9xL11nC5qL5eckNy9hW9jeDf559oX5Nd_dq8WMFbrXVBxQXFFHNO5OyU_AjpWAB77tnubOnZnnu2vLOl5-L5dvFQ-eGvp2QzegpIg0-lITtE_x_3GyjWiCY</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Ghaffarian, Hadi</creator><creator>Karimi Taheri, Ali</creator><creator>Ryu, Seunghwa</creator><creator>Kang, Keonwook</creator><general>Elsevier B.V</general><general>한국물리학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0001-9516-5809</orcidid></search><sort><creationdate>201609</creationdate><title>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</title><author>Ghaffarian, Hadi ; Karimi Taheri, Ali ; Ryu, Seunghwa ; Kang, Keonwook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cementite size effect</topic><topic>Dislocations blocking</topic><topic>Molecular dynamics simulation</topic><topic>Nanocomposite pearlite</topic><topic>Nanoindentation</topic><topic>물리학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffarian, Hadi</creatorcontrib><creatorcontrib>Karimi Taheri, Ali</creatorcontrib><creatorcontrib>Ryu, Seunghwa</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index</collection><jtitle>Current applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffarian, Hadi</au><au>Karimi Taheri, Ali</au><au>Ryu, Seunghwa</au><au>Kang, Keonwook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</atitle><jtitle>Current applied physics</jtitle><date>2016-09</date><risdate>2016</risdate><volume>16</volume><issue>9</issue><spage>1015</spage><epage>1025</epage><pages>1015-1025</pages><issn>1567-1739</issn><eissn>1878-1675</eissn><abstract>We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite.
•MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cap.2016.05.024</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9516-5809</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-1739 |
ispartof | Current Applied Physics, 2016, 16(9), , pp.1015-1025 |
issn | 1567-1739 1878-1675 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_102666 |
source | ScienceDirect Journals |
subjects | Cementite size effect Dislocations blocking Molecular dynamics simulation Nanocomposite pearlite Nanoindentation 물리학 |
title | Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20study%20of%20cementite%20size%20and%20temperature%20effects%20in%20nanocomposite%20pearlite:%20A%20molecular%20dynamics%20simulation&rft.jtitle=Current%20applied%20physics&rft.au=Ghaffarian,%20Hadi&rft.date=2016-09&rft.volume=16&rft.issue=9&rft.spage=1015&rft.epage=1025&rft.pages=1015-1025&rft.issn=1567-1739&rft.eissn=1878-1675&rft_id=info:doi/10.1016/j.cap.2016.05.024&rft_dat=%3Celsevier_nrf_k%3ES1567173916301432%3C/elsevier_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |