Loading…

Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation

We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propa...

Full description

Saved in:
Bibliographic Details
Published in:Current applied physics 2016, 16(9), , pp.1015-1025
Main Authors: Ghaffarian, Hadi, Karimi Taheri, Ali, Ryu, Seunghwa, Kang, Keonwook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703
cites cdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703
container_end_page 1025
container_issue 9
container_start_page 1015
container_title Current applied physics
container_volume 16
creator Ghaffarian, Hadi
Karimi Taheri, Ali
Ryu, Seunghwa
Kang, Keonwook
description We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite. •MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking.
doi_str_mv 10.1016/j.cap.2016.05.024
format article
fullrecord <record><control><sourceid>elsevier_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_102666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567173916301432</els_id><sourcerecordid>S1567173916301432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxZeSQhM3H6A3HXvZjbTSSuv0ZELzB0wLxT2L8eyoyPFKi7Qu2J8-ctxzT_MYfu8N86rqi-CN4ELf7RqEqWmLbHjX8FZ9qK5Fb_paaNNdFd1pUwsjl5-qm5x3vICKq-vq9ANC9GGgMMPsY2B5PgxHFh1DGsvSz8SyPxGDMLCZxokSzIdEjJwjnDPzgYUSgXGcYj7TE0HaF3HPVmyMe8LDHhIbjgFGj7mEjWVxPvW5-uhgn-n231xUvx-_bx6e6_XPp5eH1bpGaeRcIzet6kBzDWqQEo3jnMOSOqG2qpcKnZR93wOBU61ANRAa0cKS9xL11nC5qL5eckNy9hW9jeDf559oX5Nd_dq8WMFbrXVBxQXFFHNO5OyU_AjpWAB77tnubOnZnnu2vLOl5-L5dvFQ-eGvp2QzegpIg0-lITtE_x_3GyjWiCY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</title><source>ScienceDirect Journals</source><creator>Ghaffarian, Hadi ; Karimi Taheri, Ali ; Ryu, Seunghwa ; Kang, Keonwook</creator><creatorcontrib>Ghaffarian, Hadi ; Karimi Taheri, Ali ; Ryu, Seunghwa ; Kang, Keonwook</creatorcontrib><description>We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite. •MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking.</description><identifier>ISSN: 1567-1739</identifier><identifier>EISSN: 1878-1675</identifier><identifier>DOI: 10.1016/j.cap.2016.05.024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cementite size effect ; Dislocations blocking ; Molecular dynamics simulation ; Nanocomposite pearlite ; Nanoindentation ; 물리학</subject><ispartof>Current Applied Physics, 2016, 16(9), , pp.1015-1025</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</citedby><cites>FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</cites><orcidid>0000-0001-9516-5809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002144868$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaffarian, Hadi</creatorcontrib><creatorcontrib>Karimi Taheri, Ali</creatorcontrib><creatorcontrib>Ryu, Seunghwa</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><title>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</title><title>Current applied physics</title><description>We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite. •MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking.</description><subject>Cementite size effect</subject><subject>Dislocations blocking</subject><subject>Molecular dynamics simulation</subject><subject>Nanocomposite pearlite</subject><subject>Nanoindentation</subject><subject>물리학</subject><issn>1567-1739</issn><issn>1878-1675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxZeSQhM3H6A3HXvZjbTSSuv0ZELzB0wLxT2L8eyoyPFKi7Qu2J8-ctxzT_MYfu8N86rqi-CN4ELf7RqEqWmLbHjX8FZ9qK5Fb_paaNNdFd1pUwsjl5-qm5x3vICKq-vq9ANC9GGgMMPsY2B5PgxHFh1DGsvSz8SyPxGDMLCZxokSzIdEjJwjnDPzgYUSgXGcYj7TE0HaF3HPVmyMe8LDHhIbjgFGj7mEjWVxPvW5-uhgn-n231xUvx-_bx6e6_XPp5eH1bpGaeRcIzet6kBzDWqQEo3jnMOSOqG2qpcKnZR93wOBU61ANRAa0cKS9xL11nC5qL5eckNy9hW9jeDf559oX5Nd_dq8WMFbrXVBxQXFFHNO5OyU_AjpWAB77tnubOnZnnu2vLOl5-L5dvFQ-eGvp2QzegpIg0-lITtE_x_3GyjWiCY</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Ghaffarian, Hadi</creator><creator>Karimi Taheri, Ali</creator><creator>Ryu, Seunghwa</creator><creator>Kang, Keonwook</creator><general>Elsevier B.V</general><general>한국물리학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0001-9516-5809</orcidid></search><sort><creationdate>201609</creationdate><title>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</title><author>Ghaffarian, Hadi ; Karimi Taheri, Ali ; Ryu, Seunghwa ; Kang, Keonwook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cementite size effect</topic><topic>Dislocations blocking</topic><topic>Molecular dynamics simulation</topic><topic>Nanocomposite pearlite</topic><topic>Nanoindentation</topic><topic>물리학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffarian, Hadi</creatorcontrib><creatorcontrib>Karimi Taheri, Ali</creatorcontrib><creatorcontrib>Ryu, Seunghwa</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><collection>CrossRef</collection><collection>Korean Citation Index</collection><jtitle>Current applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffarian, Hadi</au><au>Karimi Taheri, Ali</au><au>Ryu, Seunghwa</au><au>Kang, Keonwook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation</atitle><jtitle>Current applied physics</jtitle><date>2016-09</date><risdate>2016</risdate><volume>16</volume><issue>9</issue><spage>1015</spage><epage>1025</epage><pages>1015-1025</pages><issn>1567-1739</issn><eissn>1878-1675</eissn><abstract>We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on the mechanism of dislocation blocking by cementite layer in the pearlite. •MD simulations of nanoindentation are performed on nanocomposite pearlites.•Dislocations incoherently transmit from ferrite to cementite.•Increasing temperature widens the distribution of plastic strain in ferrite.•Hence, thickening cementite or increasing temperature enhances dislocation blocking.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cap.2016.05.024</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9516-5809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-1739
ispartof Current Applied Physics, 2016, 16(9), , pp.1015-1025
issn 1567-1739
1878-1675
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_102666
source ScienceDirect Journals
subjects Cementite size effect
Dislocations blocking
Molecular dynamics simulation
Nanocomposite pearlite
Nanoindentation
물리학
title Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20study%20of%20cementite%20size%20and%20temperature%20effects%20in%20nanocomposite%20pearlite:%20A%20molecular%20dynamics%20simulation&rft.jtitle=Current%20applied%20physics&rft.au=Ghaffarian,%20Hadi&rft.date=2016-09&rft.volume=16&rft.issue=9&rft.spage=1015&rft.epage=1025&rft.pages=1015-1025&rft.issn=1567-1739&rft.eissn=1878-1675&rft_id=info:doi/10.1016/j.cap.2016.05.024&rft_dat=%3Celsevier_nrf_k%3ES1567173916301432%3C/elsevier_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-c07245a606a4d33c7f000a9e514b4834cf33888aeaf421c4dec712a9083c6b703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true