Loading…

NK cells encapsulated in micro/macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy

Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intra...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials research 2023, 27(00), , pp.1572-1587
Main Authors: Kim, Dahong, Jo, Seona, Lee, Dongjin, Kim, Seok-Min, Seok, Ji Min, Yeo, Seon Ju, Lee, Jun Hee, Lee, Jae Jong, Lee, Kangwon, Kim, Tae-Don, Park, Su A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-a59ec63abee201a9b30cb6b5c64510acba52d4dcf4a61739ae1babc50f5a8d393
cites cdi_FETCH-LOGICAL-c633t-a59ec63abee201a9b30cb6b5c64510acba52d4dcf4a61739ae1babc50f5a8d393
container_end_page 60
container_issue 1
container_start_page 60
container_title Biomaterials research
container_volume 27
creator Kim, Dahong
Jo, Seona
Lee, Dongjin
Kim, Seok-Min
Seok, Ji Min
Yeo, Seon Ju
Lee, Jun Hee
Lee, Jae Jong
Lee, Kangwon
Kim, Tae-Don
Park, Su A
description Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro-macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.
doi_str_mv 10.1186/s40824-023-00403-9
format article
fullrecord <record><control><sourceid>gale_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10316382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754284278</galeid><doaj_id>oai_doaj_org_article_48dff61e53a84e90bb31bab13885b1c4</doaj_id><sourcerecordid>A754284278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-a59ec63abee201a9b30cb6b5c64510acba52d4dcf4a61739ae1babc50f5a8d393</originalsourceid><addsrcrecordid>eNptkl1v0zAUhiMEYlPZH-ACReIGkLL5O84VqsZXxQTSGNfWseOk7pK42MlE_z1OOwZFKJId2c_72j7nzbLnGJ1jLMVFZEgSViBCC4QYokX1KDsliPOixIQ9zk4xIaJgAuGT7CzGDUIIM1wxXj3NTmhJWSUxOs3sl8-5sV0XczsY2Mapg9HWuRvy3pngL3pI49YHWzQ-9G5o8_WuDr61SXHnIKfvcu38NrhhnDcTlI9Tn0bX99Pgx7UNsN09y5400EV7dj8vsu8f3t9cfiquvn5cXS6vCiMoHQvglU1_oK0lCEOlKTJaaG4E4xiB0cBJzWrTMBC4pBVYrEEbjhoOsqYVXWRvDr5DaNStccqD28-tV7dBLa9vVgojigWVJMGrA1x72Kj0hB7Cbq_YL_jQKgijM51VTNZNI7DlFCSzFdKazidjKiXX2LDk9fbgtZ10b2tjhzFAd2R6vDO4dbrUXboNkYIJmRxe3TsE_2OycVS9i3NnYLB-iopIUjEiytTqRfbyH3TjpzCkwiaKyrKsKJd_qBbSC9zQ-HSwmU3VsuSMSEbKmTr_D5W-2qYA-ME2Lq0fCV4fCRIz2p9jC1OMavXt-pglBzZlKMZgm4eCYKTmFKtDilVKsdqnWM09fPF3KR8kvzNLfwE3POv4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838779358</pqid></control><display><type>article</type><title>NK cells encapsulated in micro/macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Kim, Dahong ; Jo, Seona ; Lee, Dongjin ; Kim, Seok-Min ; Seok, Ji Min ; Yeo, Seon Ju ; Lee, Jun Hee ; Lee, Jae Jong ; Lee, Kangwon ; Kim, Tae-Don ; Park, Su A</creator><creatorcontrib>Kim, Dahong ; Jo, Seona ; Lee, Dongjin ; Kim, Seok-Min ; Seok, Ji Min ; Yeo, Seon Ju ; Lee, Jun Hee ; Lee, Jae Jong ; Lee, Kangwon ; Kim, Tae-Don ; Park, Su A</creatorcontrib><description>Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro-macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.</description><identifier>ISSN: 1226-4601</identifier><identifier>ISSN: 2055-7124</identifier><identifier>EISSN: 2055-7124</identifier><identifier>DOI: 10.1186/s40824-023-00403-9</identifier><identifier>PMID: 37349810</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>3-D printers ; 3D bioprinting ; Alginic acid ; Antitumor activity ; Cancer therapies ; Cell culture ; Cell therapy ; Cell viability ; Cytokines ; Drug therapy ; Gelatin ; Hydrogels ; Immunotherapy ; Killer cells ; Leukemia ; Lysis ; Metastases ; Micro/macropore-forming ; Natural killer cells ; NK cells ; Prevention ; Sodium ; Sodium alginate ; Solid tumor ; Solid tumors ; Therapeutic applications ; Tumors ; 의공학</subject><ispartof>생체재료학회지, 2023, 27(00), , pp.1572-1587</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-a59ec63abee201a9b30cb6b5c64510acba52d4dcf4a61739ae1babc50f5a8d393</citedby><cites>FETCH-LOGICAL-c633t-a59ec63abee201a9b30cb6b5c64510acba52d4dcf4a61739ae1babc50f5a8d393</cites><orcidid>0000-0001-5878-8054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286468/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2838779358?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37349810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003005654$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dahong</creatorcontrib><creatorcontrib>Jo, Seona</creatorcontrib><creatorcontrib>Lee, Dongjin</creatorcontrib><creatorcontrib>Kim, Seok-Min</creatorcontrib><creatorcontrib>Seok, Ji Min</creatorcontrib><creatorcontrib>Yeo, Seon Ju</creatorcontrib><creatorcontrib>Lee, Jun Hee</creatorcontrib><creatorcontrib>Lee, Jae Jong</creatorcontrib><creatorcontrib>Lee, Kangwon</creatorcontrib><creatorcontrib>Kim, Tae-Don</creatorcontrib><creatorcontrib>Park, Su A</creatorcontrib><title>NK cells encapsulated in micro/macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy</title><title>Biomaterials research</title><addtitle>Biomater Res</addtitle><description>Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro-macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.</description><subject>3-D printers</subject><subject>3D bioprinting</subject><subject>Alginic acid</subject><subject>Antitumor activity</subject><subject>Cancer therapies</subject><subject>Cell culture</subject><subject>Cell therapy</subject><subject>Cell viability</subject><subject>Cytokines</subject><subject>Drug therapy</subject><subject>Gelatin</subject><subject>Hydrogels</subject><subject>Immunotherapy</subject><subject>Killer cells</subject><subject>Leukemia</subject><subject>Lysis</subject><subject>Metastases</subject><subject>Micro/macropore-forming</subject><subject>Natural killer cells</subject><subject>NK cells</subject><subject>Prevention</subject><subject>Sodium</subject><subject>Sodium alginate</subject><subject>Solid tumor</subject><subject>Solid tumors</subject><subject>Therapeutic applications</subject><subject>Tumors</subject><subject>의공학</subject><issn>1226-4601</issn><issn>2055-7124</issn><issn>2055-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1v0zAUhiMEYlPZH-ACReIGkLL5O84VqsZXxQTSGNfWseOk7pK42MlE_z1OOwZFKJId2c_72j7nzbLnGJ1jLMVFZEgSViBCC4QYokX1KDsliPOixIQ9zk4xIaJgAuGT7CzGDUIIM1wxXj3NTmhJWSUxOs3sl8-5sV0XczsY2Mapg9HWuRvy3pngL3pI49YHWzQ-9G5o8_WuDr61SXHnIKfvcu38NrhhnDcTlI9Tn0bX99Pgx7UNsN09y5400EV7dj8vsu8f3t9cfiquvn5cXS6vCiMoHQvglU1_oK0lCEOlKTJaaG4E4xiB0cBJzWrTMBC4pBVYrEEbjhoOsqYVXWRvDr5DaNStccqD28-tV7dBLa9vVgojigWVJMGrA1x72Kj0hB7Cbq_YL_jQKgijM51VTNZNI7DlFCSzFdKazidjKiXX2LDk9fbgtZ10b2tjhzFAd2R6vDO4dbrUXboNkYIJmRxe3TsE_2OycVS9i3NnYLB-iopIUjEiytTqRfbyH3TjpzCkwiaKyrKsKJd_qBbSC9zQ-HSwmU3VsuSMSEbKmTr_D5W-2qYA-ME2Lq0fCV4fCRIz2p9jC1OMavXt-pglBzZlKMZgm4eCYKTmFKtDilVKsdqnWM09fPF3KR8kvzNLfwE3POv4</recordid><startdate>20230622</startdate><enddate>20230622</enddate><creator>Kim, Dahong</creator><creator>Jo, Seona</creator><creator>Lee, Dongjin</creator><creator>Kim, Seok-Min</creator><creator>Seok, Ji Min</creator><creator>Yeo, Seon Ju</creator><creator>Lee, Jun Hee</creator><creator>Lee, Jae Jong</creator><creator>Lee, Kangwon</creator><creator>Kim, Tae-Don</creator><creator>Park, Su A</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>American Association for the Advancement of Science (AAAS)</general><general>한국생체재료학회</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0001-5878-8054</orcidid></search><sort><creationdate>20230622</creationdate><title>NK cells encapsulated in micro/macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy</title><author>Kim, Dahong ; Jo, Seona ; Lee, Dongjin ; Kim, Seok-Min ; Seok, Ji Min ; Yeo, Seon Ju ; Lee, Jun Hee ; Lee, Jae Jong ; Lee, Kangwon ; Kim, Tae-Don ; Park, Su A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-a59ec63abee201a9b30cb6b5c64510acba52d4dcf4a61739ae1babc50f5a8d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>3D bioprinting</topic><topic>Alginic acid</topic><topic>Antitumor activity</topic><topic>Cancer therapies</topic><topic>Cell culture</topic><topic>Cell therapy</topic><topic>Cell viability</topic><topic>Cytokines</topic><topic>Drug therapy</topic><topic>Gelatin</topic><topic>Hydrogels</topic><topic>Immunotherapy</topic><topic>Killer cells</topic><topic>Leukemia</topic><topic>Lysis</topic><topic>Metastases</topic><topic>Micro/macropore-forming</topic><topic>Natural killer cells</topic><topic>NK cells</topic><topic>Prevention</topic><topic>Sodium</topic><topic>Sodium alginate</topic><topic>Solid tumor</topic><topic>Solid tumors</topic><topic>Therapeutic applications</topic><topic>Tumors</topic><topic>의공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dahong</creatorcontrib><creatorcontrib>Jo, Seona</creatorcontrib><creatorcontrib>Lee, Dongjin</creatorcontrib><creatorcontrib>Kim, Seok-Min</creatorcontrib><creatorcontrib>Seok, Ji Min</creatorcontrib><creatorcontrib>Yeo, Seon Ju</creatorcontrib><creatorcontrib>Lee, Jun Hee</creatorcontrib><creatorcontrib>Lee, Jae Jong</creatorcontrib><creatorcontrib>Lee, Kangwon</creatorcontrib><creatorcontrib>Kim, Tae-Don</creatorcontrib><creatorcontrib>Park, Su A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>Biomaterials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dahong</au><au>Jo, Seona</au><au>Lee, Dongjin</au><au>Kim, Seok-Min</au><au>Seok, Ji Min</au><au>Yeo, Seon Ju</au><au>Lee, Jun Hee</au><au>Lee, Jae Jong</au><au>Lee, Kangwon</au><au>Kim, Tae-Don</au><au>Park, Su A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NK cells encapsulated in micro/macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy</atitle><jtitle>Biomaterials research</jtitle><addtitle>Biomater Res</addtitle><date>2023-06-22</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>60</spage><epage>60</epage><pages>60-60</pages><issn>1226-4601</issn><issn>2055-7124</issn><eissn>2055-7124</eissn><abstract>Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro-macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37349810</pmid><doi>10.1186/s40824-023-00403-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5878-8054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1226-4601
ispartof 생체재료학회지, 2023, 27(00), , pp.1572-1587
issn 1226-4601
2055-7124
2055-7124
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10316382
source PubMed (Medline); Publicly Available Content Database
subjects 3-D printers
3D bioprinting
Alginic acid
Antitumor activity
Cancer therapies
Cell culture
Cell therapy
Cell viability
Cytokines
Drug therapy
Gelatin
Hydrogels
Immunotherapy
Killer cells
Leukemia
Lysis
Metastases
Micro/macropore-forming
Natural killer cells
NK cells
Prevention
Sodium
Sodium alginate
Solid tumor
Solid tumors
Therapeutic applications
Tumors
의공학
title NK cells encapsulated in micro/macropore-forming hydrogels via 3D bioprinting for tumor immunotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NK%20cells%20encapsulated%20in%20micro/macropore-forming%20hydrogels%20via%203D%20bioprinting%20for%20tumor%20immunotherapy&rft.jtitle=Biomaterials%20research&rft.au=Kim,%20Dahong&rft.date=2023-06-22&rft.volume=27&rft.issue=1&rft.spage=60&rft.epage=60&rft.pages=60-60&rft.issn=1226-4601&rft.eissn=2055-7124&rft_id=info:doi/10.1186/s40824-023-00403-9&rft_dat=%3Cgale_nrf_k%3EA754284278%3C/gale_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-a59ec63abee201a9b30cb6b5c64510acba52d4dcf4a61739ae1babc50f5a8d393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838779358&rft_id=info:pmid/37349810&rft_galeid=A754284278&rfr_iscdi=true