Loading…

Implementation of Experimental Static Recrystallization of High Strength Steel into Computational Simulation of Multi-pass Slab Hot Rolling

Microstructural changes and softening due to static recrystallization have a critical influence on thermo-mechanical behavior of high strength steels during industrial multi-pass hot rolling. Numerical simulation using finite element analysis (FEA) can be used to accurately predict the softening beh...

Full description

Saved in:
Bibliographic Details
Published in:Metals and materials international 2023, 29(11), , pp.3340-3355
Main Authors: Dasari, S. K., Ganguly, S., Abutunis, A., Chandrashekhara, K., Buchely, M. F., Lekakh, S. N., O’Malley, R. J., Natarajan, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-6b36733ad3a2e44bca037399484698a7790ff8849c27a1348ec80bcf1d6f45f73
cites cdi_FETCH-LOGICAL-c354t-6b36733ad3a2e44bca037399484698a7790ff8849c27a1348ec80bcf1d6f45f73
container_end_page 3355
container_issue 11
container_start_page 3340
container_title Metals and materials international
container_volume 29
creator Dasari, S. K.
Ganguly, S.
Abutunis, A.
Chandrashekhara, K.
Buchely, M. F.
Lekakh, S. N.
O’Malley, R. J.
Natarajan, T.
description Microstructural changes and softening due to static recrystallization have a critical influence on thermo-mechanical behavior of high strength steels during industrial multi-pass hot rolling. Numerical simulation using finite element analysis (FEA) can be used to accurately predict the softening behavior during the hot rolling process. Therefore, the implementation of an experimentally defined static recrystallization model into FEA is necessary to get realistic simulation prediction. In this study, the extent of softening during static recrystallization in Si and Mn alloyed high strength steel was measured using double hit tests. A Gleeble™ thermo-mechanical simulator was used to perform the double hit tests with variations in temperature, strain rate, and interpass time. The kinetics of static recrystallization was developed based on the experimental results and implemented into a finite element model of a multi-pass plate hot rolling process using explicit subroutines. Three different modeling approaches were implemented in Abaqus to predict the fraction of static recrystallization and softening during multi-pass hot rolling. Simulation results showed that the fraction of recrystallization significantly depends on the extent of thickness reduction during rolling at a typical industrial multi-pass schedule. Additionally, an increase in temperature greatly increased the fraction of recrystallization and static softening. The suggested approach could be used for the optimization of the hot rolling process for Si and Mn alloyed high strength steels. Graphic Abstract
doi_str_mv 10.1007/s12540-023-01442-6
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10323774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879581408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6b36733ad3a2e44bca037399484698a7790ff8849c27a1348ec80bcf1d6f45f73</originalsourceid><addsrcrecordid>eNp9kc1KJDEURoOMYI_6Aq4CsxOi-atKspRGpxsUodV1SMekjFZXapIqGH0FX9p0l-jO1Q2X8x3I_QA4IfiMYCzOM6EVxwhThjDhnKJ6D8woxhXihKtfYEYqJZGqKTsAv3N-xrgmjNAZeF9u-tZtXDeYIcQORg8v__cuhd2qhXfbvYUrZ9NrLos2vH2Bi9A8FSC5rhm2D-daGLohwnnc9OMk3CrCZmy_QjdjOwTUm5zhXWvWcBEHuIrF2zVHYN-bNrvjz3kIHq4u7-cLdH37dzm_uEaWVXxA9ZrVgjHzyAx1nK-twUwwpbjktZJGCIW9l5IrS4UhjEtnJV5bTx5rzysv2CE4nbxd8vrFBh1N2M0m6pekL1b3S00wo0wIXuA_E9yn-G90edDPcUzlX1lTKVQlCceyUHSibIo5J-d1X05o0msR6W1DempIl4b0riFdlxCbQrnAXePSt_qH1AeGHJTd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879581408</pqid></control><display><type>article</type><title>Implementation of Experimental Static Recrystallization of High Strength Steel into Computational Simulation of Multi-pass Slab Hot Rolling</title><source>Springer Nature</source><creator>Dasari, S. K. ; Ganguly, S. ; Abutunis, A. ; Chandrashekhara, K. ; Buchely, M. F. ; Lekakh, S. N. ; O’Malley, R. J. ; Natarajan, T.</creator><creatorcontrib>Dasari, S. K. ; Ganguly, S. ; Abutunis, A. ; Chandrashekhara, K. ; Buchely, M. F. ; Lekakh, S. N. ; O’Malley, R. J. ; Natarajan, T.</creatorcontrib><description>Microstructural changes and softening due to static recrystallization have a critical influence on thermo-mechanical behavior of high strength steels during industrial multi-pass hot rolling. Numerical simulation using finite element analysis (FEA) can be used to accurately predict the softening behavior during the hot rolling process. Therefore, the implementation of an experimentally defined static recrystallization model into FEA is necessary to get realistic simulation prediction. In this study, the extent of softening during static recrystallization in Si and Mn alloyed high strength steel was measured using double hit tests. A Gleeble™ thermo-mechanical simulator was used to perform the double hit tests with variations in temperature, strain rate, and interpass time. The kinetics of static recrystallization was developed based on the experimental results and implemented into a finite element model of a multi-pass plate hot rolling process using explicit subroutines. Three different modeling approaches were implemented in Abaqus to predict the fraction of static recrystallization and softening during multi-pass hot rolling. Simulation results showed that the fraction of recrystallization significantly depends on the extent of thickness reduction during rolling at a typical industrial multi-pass schedule. Additionally, an increase in temperature greatly increased the fraction of recrystallization and static softening. The suggested approach could be used for the optimization of the hot rolling process for Si and Mn alloyed high strength steels. Graphic Abstract</description><identifier>ISSN: 1598-9623</identifier><identifier>EISSN: 2005-4149</identifier><identifier>DOI: 10.1007/s12540-023-01442-6</identifier><language>eng</language><publisher>Seoul: The Korean Institute of Metals and Materials</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Engineering Thermodynamics ; Finite element method ; Heat and Mass Transfer ; High strength steel ; High strength steels ; Hot rolling ; Machines ; Magnetic Materials ; Magnetism ; Manufacturing ; Materials Science ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Metallic Materials ; Optimization ; Processes ; Recrystallization ; Simulation ; Softening ; Solid Mechanics ; Strain rate ; Thermal simulators ; Thermomechanical properties ; 재료공학</subject><ispartof>Metals and Materials International, 2023, 29(11), , pp.3340-3355</ispartof><rights>The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6b36733ad3a2e44bca037399484698a7790ff8849c27a1348ec80bcf1d6f45f73</citedby><cites>FETCH-LOGICAL-c354t-6b36733ad3a2e44bca037399484698a7790ff8849c27a1348ec80bcf1d6f45f73</cites><orcidid>0000-0001-5973-2132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003013024$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Dasari, S. K.</creatorcontrib><creatorcontrib>Ganguly, S.</creatorcontrib><creatorcontrib>Abutunis, A.</creatorcontrib><creatorcontrib>Chandrashekhara, K.</creatorcontrib><creatorcontrib>Buchely, M. F.</creatorcontrib><creatorcontrib>Lekakh, S. N.</creatorcontrib><creatorcontrib>O’Malley, R. J.</creatorcontrib><creatorcontrib>Natarajan, T.</creatorcontrib><title>Implementation of Experimental Static Recrystallization of High Strength Steel into Computational Simulation of Multi-pass Slab Hot Rolling</title><title>Metals and materials international</title><addtitle>Met. Mater. Int</addtitle><description>Microstructural changes and softening due to static recrystallization have a critical influence on thermo-mechanical behavior of high strength steels during industrial multi-pass hot rolling. Numerical simulation using finite element analysis (FEA) can be used to accurately predict the softening behavior during the hot rolling process. Therefore, the implementation of an experimentally defined static recrystallization model into FEA is necessary to get realistic simulation prediction. In this study, the extent of softening during static recrystallization in Si and Mn alloyed high strength steel was measured using double hit tests. A Gleeble™ thermo-mechanical simulator was used to perform the double hit tests with variations in temperature, strain rate, and interpass time. The kinetics of static recrystallization was developed based on the experimental results and implemented into a finite element model of a multi-pass plate hot rolling process using explicit subroutines. Three different modeling approaches were implemented in Abaqus to predict the fraction of static recrystallization and softening during multi-pass hot rolling. Simulation results showed that the fraction of recrystallization significantly depends on the extent of thickness reduction during rolling at a typical industrial multi-pass schedule. Additionally, an increase in temperature greatly increased the fraction of recrystallization and static softening. The suggested approach could be used for the optimization of the hot rolling process for Si and Mn alloyed high strength steels. Graphic Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Engineering Thermodynamics</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>High strength steel</subject><subject>High strength steels</subject><subject>Hot rolling</subject><subject>Machines</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Optimization</subject><subject>Processes</subject><subject>Recrystallization</subject><subject>Simulation</subject><subject>Softening</subject><subject>Solid Mechanics</subject><subject>Strain rate</subject><subject>Thermal simulators</subject><subject>Thermomechanical properties</subject><subject>재료공학</subject><issn>1598-9623</issn><issn>2005-4149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KJDEURoOMYI_6Aq4CsxOi-atKspRGpxsUodV1SMekjFZXapIqGH0FX9p0l-jO1Q2X8x3I_QA4IfiMYCzOM6EVxwhThjDhnKJ6D8woxhXihKtfYEYqJZGqKTsAv3N-xrgmjNAZeF9u-tZtXDeYIcQORg8v__cuhd2qhXfbvYUrZ9NrLos2vH2Bi9A8FSC5rhm2D-daGLohwnnc9OMk3CrCZmy_QjdjOwTUm5zhXWvWcBEHuIrF2zVHYN-bNrvjz3kIHq4u7-cLdH37dzm_uEaWVXxA9ZrVgjHzyAx1nK-twUwwpbjktZJGCIW9l5IrS4UhjEtnJV5bTx5rzysv2CE4nbxd8vrFBh1N2M0m6pekL1b3S00wo0wIXuA_E9yn-G90edDPcUzlX1lTKVQlCceyUHSibIo5J-d1X05o0msR6W1DempIl4b0riFdlxCbQrnAXePSt_qH1AeGHJTd</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Dasari, S. K.</creator><creator>Ganguly, S.</creator><creator>Abutunis, A.</creator><creator>Chandrashekhara, K.</creator><creator>Buchely, M. F.</creator><creator>Lekakh, S. N.</creator><creator>O’Malley, R. J.</creator><creator>Natarajan, T.</creator><general>The Korean Institute of Metals and Materials</general><general>Springer Nature B.V</general><general>대한금속·재료학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0001-5973-2132</orcidid></search><sort><creationdate>20231101</creationdate><title>Implementation of Experimental Static Recrystallization of High Strength Steel into Computational Simulation of Multi-pass Slab Hot Rolling</title><author>Dasari, S. K. ; Ganguly, S. ; Abutunis, A. ; Chandrashekhara, K. ; Buchely, M. F. ; Lekakh, S. N. ; O’Malley, R. J. ; Natarajan, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6b36733ad3a2e44bca037399484698a7790ff8849c27a1348ec80bcf1d6f45f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Engineering Thermodynamics</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>High strength steel</topic><topic>High strength steels</topic><topic>Hot rolling</topic><topic>Machines</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Optimization</topic><topic>Processes</topic><topic>Recrystallization</topic><topic>Simulation</topic><topic>Softening</topic><topic>Solid Mechanics</topic><topic>Strain rate</topic><topic>Thermal simulators</topic><topic>Thermomechanical properties</topic><topic>재료공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasari, S. K.</creatorcontrib><creatorcontrib>Ganguly, S.</creatorcontrib><creatorcontrib>Abutunis, A.</creatorcontrib><creatorcontrib>Chandrashekhara, K.</creatorcontrib><creatorcontrib>Buchely, M. F.</creatorcontrib><creatorcontrib>Lekakh, S. N.</creatorcontrib><creatorcontrib>O’Malley, R. J.</creatorcontrib><creatorcontrib>Natarajan, T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Korean Citation Index</collection><jtitle>Metals and materials international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasari, S. K.</au><au>Ganguly, S.</au><au>Abutunis, A.</au><au>Chandrashekhara, K.</au><au>Buchely, M. F.</au><au>Lekakh, S. N.</au><au>O’Malley, R. J.</au><au>Natarajan, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Experimental Static Recrystallization of High Strength Steel into Computational Simulation of Multi-pass Slab Hot Rolling</atitle><jtitle>Metals and materials international</jtitle><stitle>Met. Mater. Int</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>29</volume><issue>11</issue><spage>3340</spage><epage>3355</epage><pages>3340-3355</pages><issn>1598-9623</issn><eissn>2005-4149</eissn><abstract>Microstructural changes and softening due to static recrystallization have a critical influence on thermo-mechanical behavior of high strength steels during industrial multi-pass hot rolling. Numerical simulation using finite element analysis (FEA) can be used to accurately predict the softening behavior during the hot rolling process. Therefore, the implementation of an experimentally defined static recrystallization model into FEA is necessary to get realistic simulation prediction. In this study, the extent of softening during static recrystallization in Si and Mn alloyed high strength steel was measured using double hit tests. A Gleeble™ thermo-mechanical simulator was used to perform the double hit tests with variations in temperature, strain rate, and interpass time. The kinetics of static recrystallization was developed based on the experimental results and implemented into a finite element model of a multi-pass plate hot rolling process using explicit subroutines. Three different modeling approaches were implemented in Abaqus to predict the fraction of static recrystallization and softening during multi-pass hot rolling. Simulation results showed that the fraction of recrystallization significantly depends on the extent of thickness reduction during rolling at a typical industrial multi-pass schedule. Additionally, an increase in temperature greatly increased the fraction of recrystallization and static softening. The suggested approach could be used for the optimization of the hot rolling process for Si and Mn alloyed high strength steels. Graphic Abstract</abstract><cop>Seoul</cop><pub>The Korean Institute of Metals and Materials</pub><doi>10.1007/s12540-023-01442-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5973-2132</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-9623
ispartof Metals and Materials International, 2023, 29(11), , pp.3340-3355
issn 1598-9623
2005-4149
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10323774
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Computer simulation
Engineering Thermodynamics
Finite element method
Heat and Mass Transfer
High strength steel
High strength steels
Hot rolling
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Mathematical analysis
Mathematical models
Mechanical properties
Metallic Materials
Optimization
Processes
Recrystallization
Simulation
Softening
Solid Mechanics
Strain rate
Thermal simulators
Thermomechanical properties
재료공학
title Implementation of Experimental Static Recrystallization of High Strength Steel into Computational Simulation of Multi-pass Slab Hot Rolling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Experimental%20Static%20Recrystallization%20of%20High%20Strength%20Steel%20into%20Computational%20Simulation%20of%20Multi-pass%20Slab%20Hot%20Rolling&rft.jtitle=Metals%20and%20materials%20international&rft.au=Dasari,%20S.%20K.&rft.date=2023-11-01&rft.volume=29&rft.issue=11&rft.spage=3340&rft.epage=3355&rft.pages=3340-3355&rft.issn=1598-9623&rft.eissn=2005-4149&rft_id=info:doi/10.1007/s12540-023-01442-6&rft_dat=%3Cproquest_nrf_k%3E2879581408%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-6b36733ad3a2e44bca037399484698a7790ff8849c27a1348ec80bcf1d6f45f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879581408&rft_id=info:pmid/&rfr_iscdi=true