Loading…
Adaptive range selection for parameter optimization of VMD algorithm in rolling bearing fault diagnosis under strong background noise
The optimized variational modal decomposition (VMD) algorithm is widely used in the diagnosis of rolling bearing faults. However, the subjectivity of the optimization range can compromise the effect of fault feature extraction under strong background noise (SBN). To enhance the fault diagnosis accur...
Saved in:
Published in: | Journal of mechanical science and technology 2023, 37(11), , pp.5759-5773 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optimized variational modal decomposition (VMD) algorithm is widely used in the diagnosis of rolling bearing faults. However, the subjectivity of the optimization range can compromise the effect of fault feature extraction under strong background noise (SBN). To enhance the fault diagnosis accuracy of rolling bearings under SBN, an adaptive range selection for parameter optimization of the VMD algorithm was developed. The proposed algorithm utilizes a method based on peak spectral clustering and center frequency to determine the optimal range of mode number and penalty factor. An optimization process based on the weighted kurtosis spectrum
L
2
/
L
1
norm is then employed as the fitness function to obtain the optimal values of modes and penalty factor. Experimental results have demonstrated that the proposed method achieves a 20.02 % increase in fault diagnosis accuracy compared to the classical adaptive variational mode decomposition (AVMD) method. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-023-1015-3 |