Loading…

Preparation and Characterization of Disorderly PCL Crystal Lamellae Electrostatic Direct Writing Scaffolds with Polydopamine Coating

Polycaprolactone (PCL) exhibits limited applicability in the application of biological tissue engineering scaffolds due to its lower surface hydrophilicity and surface energy. In this paper, PCL crystal lamellae scaffolds with different surface roughness were fabricated by immersing electrostatic di...

Full description

Saved in:
Bibliographic Details
Published in:Fibers and polymers 2023, 24(10), , pp.3385-3391
Main Authors: Zeng, Jiaqi, Li, Wenchao, Lei, Min, Dong, Chunfa, Zhou, Kui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polycaprolactone (PCL) exhibits limited applicability in the application of biological tissue engineering scaffolds due to its lower surface hydrophilicity and surface energy. In this paper, PCL crystal lamellae scaffolds with different surface roughness were fabricated by immersing electrostatic direct-written PCL scaffolds in PCL/Amyl acetate (AC) solution for 15 , 30 , 60  and 120 min, respectively, using solution incubation for crystallization. The rough scaffolds were subsequently coated with polydopamine (PDA) for 4 h, 8 h, 12 h and 16 h. Surface morphology, chemical properties and water contact angle tests were performed on both types of scaffolds. To evaluate the feasibility of the modified scaffold as a bionic scaffold, L929 mouse fibroblasts were inoculated on the surface of the scaffold and cultured for 1, 3 and 7 days. When compared to the untreated scaffolds, the surface of the scaffolds treated for 15 , 30 , 60 , and 120 min, respectively exhibited a distinct PCL crystal lamellae structure, accompanied by a significant increase in surface roughness and corresponding water contact angle elevation. In the cell experiments, the 30 min treatment group demonstrated superior cellular activity compared to the other experimental groups. The water contact angle of the PDA-modified scaffolds decreased over time with extended treatment durations, ultimately reaching 0°. In the cell experiments, the 8 h treatment scaffolds exhibited a more pronounced improvement in activity compared to the other groups. Based on these results, it can be concluded that the PDA-modified PCL crystal lamellae electrostatic direct-write scaffold promotes cell proliferation and differentiation, thereby facilitating tissue regeneration.
ISSN:1229-9197
1875-0052
DOI:10.1007/s12221-023-00338-x