Loading…
Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians
BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accu...
Saved in:
Published in: | Journal of Korean medical science 2023, 38(45), , pp.1-9 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73 |
container_end_page | e322 |
container_issue | 45 |
container_start_page | e322 |
container_title | Journal of Korean medical science |
container_volume | 38 |
creator | Kim, Donghoon Jeong, Joo Kim, Joonghee Cho, Youngjin Park, Inwon Lee, Sang-Min Oh, Young Taeck Baek, Sumin Kang, Dongin Lee, Eunkyoung Jeong, Bumi |
description | BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P < 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED. |
doi_str_mv | 10.3346/jkms.2023.38.e322 |
format | article |
fullrecord | <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10326272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892270571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73</originalsourceid><addsrcrecordid>eNotkU9LxDAUxIsoqKsfwFuOIrQmedt_3uq66oKg6HoOafq6xm3TmlShXvzqpq6nGYYfA-9NEJwxGgHMk8v3besiTjlEkEUInO8FRyzOszCBON33njIWZjnMD4Nj594p5XHM4Sj4uR97tFvZYKslucEB1aA7Q7QhyxbtBo0afdxLO7RoBkdenTYbsjJ60LIhy8WduyIFeWk90L91BkmxmlJSGNmM32jJl4vIdSdtFS7QDrrWWJGnt9FppaVxJ8FBLRuHp_86C15vl-vFffjweLdaFA-hApoNYU7TUtaKlsybBDNgwCtWybwGmkCWMCaBqthDZU5Lf7KsYV5Wqs5zFvMqhVlwses1thZbpUUn9Z9uOrG1onherwSjwBOecg-f7-Dedh-f6AbRaqewaaTB7tMJnuWcpzROmUfZDlW2c85iLXqr_TNG3yamZcS0jJiWEZCJaRn4BWcPggU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892270571</pqid></control><display><type>article</type><title>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</title><source>PubMed Central</source><creator>Kim, Donghoon ; Jeong, Joo ; Kim, Joonghee ; Cho, Youngjin ; Park, Inwon ; Lee, Sang-Min ; Oh, Young Taeck ; Baek, Sumin ; Kang, Dongin ; Lee, Eunkyoung ; Jeong, Bumi</creator><creatorcontrib>Kim, Donghoon ; Jeong, Joo ; Kim, Joonghee ; Cho, Youngjin ; Park, Inwon ; Lee, Sang-Min ; Oh, Young Taeck ; Baek, Sumin ; Kang, Dongin ; Lee, Eunkyoung ; Jeong, Bumi</creatorcontrib><description>BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P < 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED.</description><identifier>ISSN: 1011-8934</identifier><identifier>EISSN: 1598-6357</identifier><identifier>DOI: 10.3346/jkms.2023.38.e322</identifier><language>eng</language><publisher>대한의학회</publisher><subject>의학일반</subject><ispartof>Journal of Korean Medical Science, 2023, 38(45), , pp.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73</cites><orcidid>0000-0002-7747-3987 ; 0000-0002-2799-4071 ; 0009-0009-5917-8843 ; 0000-0001-5080-7097 ; 0000-0001-8106-3713 ; 0000-0003-1296-8425 ; 0000-0002-9055-6250 ; 0000-0003-0691-5909 ; 0009-0001-1806-9757 ; 0000-0001-7525-9189 ; 0000-0003-4455-9482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003015760$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Donghoon</creatorcontrib><creatorcontrib>Jeong, Joo</creatorcontrib><creatorcontrib>Kim, Joonghee</creatorcontrib><creatorcontrib>Cho, Youngjin</creatorcontrib><creatorcontrib>Park, Inwon</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Oh, Young Taeck</creatorcontrib><creatorcontrib>Baek, Sumin</creatorcontrib><creatorcontrib>Kang, Dongin</creatorcontrib><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Jeong, Bumi</creatorcontrib><title>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</title><title>Journal of Korean medical science</title><description>BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P < 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED.</description><subject>의학일반</subject><issn>1011-8934</issn><issn>1598-6357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkU9LxDAUxIsoqKsfwFuOIrQmedt_3uq66oKg6HoOafq6xm3TmlShXvzqpq6nGYYfA-9NEJwxGgHMk8v3besiTjlEkEUInO8FRyzOszCBON33njIWZjnMD4Nj594p5XHM4Sj4uR97tFvZYKslucEB1aA7Q7QhyxbtBo0afdxLO7RoBkdenTYbsjJ60LIhy8WduyIFeWk90L91BkmxmlJSGNmM32jJl4vIdSdtFS7QDrrWWJGnt9FppaVxJ8FBLRuHp_86C15vl-vFffjweLdaFA-hApoNYU7TUtaKlsybBDNgwCtWybwGmkCWMCaBqthDZU5Lf7KsYV5Wqs5zFvMqhVlwses1thZbpUUn9Z9uOrG1onherwSjwBOecg-f7-Dedh-f6AbRaqewaaTB7tMJnuWcpzROmUfZDlW2c85iLXqr_TNG3yamZcS0jJiWEZCJaRn4BWcPggU</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Kim, Donghoon</creator><creator>Jeong, Joo</creator><creator>Kim, Joonghee</creator><creator>Cho, Youngjin</creator><creator>Park, Inwon</creator><creator>Lee, Sang-Min</creator><creator>Oh, Young Taeck</creator><creator>Baek, Sumin</creator><creator>Kang, Dongin</creator><creator>Lee, Eunkyoung</creator><creator>Jeong, Bumi</creator><general>대한의학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-7747-3987</orcidid><orcidid>https://orcid.org/0000-0002-2799-4071</orcidid><orcidid>https://orcid.org/0009-0009-5917-8843</orcidid><orcidid>https://orcid.org/0000-0001-5080-7097</orcidid><orcidid>https://orcid.org/0000-0001-8106-3713</orcidid><orcidid>https://orcid.org/0000-0003-1296-8425</orcidid><orcidid>https://orcid.org/0000-0002-9055-6250</orcidid><orcidid>https://orcid.org/0000-0003-0691-5909</orcidid><orcidid>https://orcid.org/0009-0001-1806-9757</orcidid><orcidid>https://orcid.org/0000-0001-7525-9189</orcidid><orcidid>https://orcid.org/0000-0003-4455-9482</orcidid></search><sort><creationdate>20231120</creationdate><title>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</title><author>Kim, Donghoon ; Jeong, Joo ; Kim, Joonghee ; Cho, Youngjin ; Park, Inwon ; Lee, Sang-Min ; Oh, Young Taeck ; Baek, Sumin ; Kang, Dongin ; Lee, Eunkyoung ; Jeong, Bumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>의학일반</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghoon</creatorcontrib><creatorcontrib>Jeong, Joo</creatorcontrib><creatorcontrib>Kim, Joonghee</creatorcontrib><creatorcontrib>Cho, Youngjin</creatorcontrib><creatorcontrib>Park, Inwon</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Oh, Young Taeck</creatorcontrib><creatorcontrib>Baek, Sumin</creatorcontrib><creatorcontrib>Kang, Dongin</creatorcontrib><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Jeong, Bumi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Korean Citation Index</collection><jtitle>Journal of Korean medical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghoon</au><au>Jeong, Joo</au><au>Kim, Joonghee</au><au>Cho, Youngjin</au><au>Park, Inwon</au><au>Lee, Sang-Min</au><au>Oh, Young Taeck</au><au>Baek, Sumin</au><au>Kang, Dongin</au><au>Lee, Eunkyoung</au><au>Jeong, Bumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</atitle><jtitle>Journal of Korean medical science</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>38</volume><issue>45</issue><spage>e322</spage><epage>e322</epage><pages>e322-e322</pages><issn>1011-8934</issn><eissn>1598-6357</eissn><abstract>BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P < 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED.</abstract><pub>대한의학회</pub><doi>10.3346/jkms.2023.38.e322</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7747-3987</orcidid><orcidid>https://orcid.org/0000-0002-2799-4071</orcidid><orcidid>https://orcid.org/0009-0009-5917-8843</orcidid><orcidid>https://orcid.org/0000-0001-5080-7097</orcidid><orcidid>https://orcid.org/0000-0001-8106-3713</orcidid><orcidid>https://orcid.org/0000-0003-1296-8425</orcidid><orcidid>https://orcid.org/0000-0002-9055-6250</orcidid><orcidid>https://orcid.org/0000-0003-0691-5909</orcidid><orcidid>https://orcid.org/0009-0001-1806-9757</orcidid><orcidid>https://orcid.org/0000-0001-7525-9189</orcidid><orcidid>https://orcid.org/0000-0003-4455-9482</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-8934 |
ispartof | Journal of Korean Medical Science, 2023, 38(45), , pp.1-9 |
issn | 1011-8934 1598-6357 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_10326272 |
source | PubMed Central |
subjects | 의학일반 |
title | Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperkalemia%20Detection%20in%20Emergency%20Departments%20Using%20Initial%20ECGs:%20A%20Smartphone%20AI%20ECG%20Analyzer%20vs.%20Board-Certified%20Physicians&rft.jtitle=Journal%20of%20Korean%20medical%20science&rft.au=Kim,%20Donghoon&rft.date=2023-11-20&rft.volume=38&rft.issue=45&rft.spage=e322&rft.epage=e322&rft.pages=e322-e322&rft.issn=1011-8934&rft.eissn=1598-6357&rft_id=info:doi/10.3346/jkms.2023.38.e322&rft_dat=%3Cproquest_nrf_k%3E2892270571%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892270571&rft_id=info:pmid/&rfr_iscdi=true |