Loading…

Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians

BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Korean medical science 2023, 38(45), , pp.1-9
Main Authors: Kim, Donghoon, Jeong, Joo, Kim, Joonghee, Cho, Youngjin, Park, Inwon, Lee, Sang-Min, Oh, Young Taeck, Baek, Sumin, Kang, Dongin, Lee, Eunkyoung, Jeong, Bumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73
container_end_page e322
container_issue 45
container_start_page e322
container_title Journal of Korean medical science
container_volume 38
creator Kim, Donghoon
Jeong, Joo
Kim, Joonghee
Cho, Youngjin
Park, Inwon
Lee, Sang-Min
Oh, Young Taeck
Baek, Sumin
Kang, Dongin
Lee, Eunkyoung
Jeong, Bumi
description BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P < 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED.
doi_str_mv 10.3346/jkms.2023.38.e322
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10326272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892270571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73</originalsourceid><addsrcrecordid>eNotkU9LxDAUxIsoqKsfwFuOIrQmedt_3uq66oKg6HoOafq6xm3TmlShXvzqpq6nGYYfA-9NEJwxGgHMk8v3besiTjlEkEUInO8FRyzOszCBON33njIWZjnMD4Nj594p5XHM4Sj4uR97tFvZYKslucEB1aA7Q7QhyxbtBo0afdxLO7RoBkdenTYbsjJ60LIhy8WduyIFeWk90L91BkmxmlJSGNmM32jJl4vIdSdtFS7QDrrWWJGnt9FppaVxJ8FBLRuHp_86C15vl-vFffjweLdaFA-hApoNYU7TUtaKlsybBDNgwCtWybwGmkCWMCaBqthDZU5Lf7KsYV5Wqs5zFvMqhVlwses1thZbpUUn9Z9uOrG1onherwSjwBOecg-f7-Dedh-f6AbRaqewaaTB7tMJnuWcpzROmUfZDlW2c85iLXqr_TNG3yamZcS0jJiWEZCJaRn4BWcPggU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892270571</pqid></control><display><type>article</type><title>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</title><source>PubMed Central</source><creator>Kim, Donghoon ; Jeong, Joo ; Kim, Joonghee ; Cho, Youngjin ; Park, Inwon ; Lee, Sang-Min ; Oh, Young Taeck ; Baek, Sumin ; Kang, Dongin ; Lee, Eunkyoung ; Jeong, Bumi</creator><creatorcontrib>Kim, Donghoon ; Jeong, Joo ; Kim, Joonghee ; Cho, Youngjin ; Park, Inwon ; Lee, Sang-Min ; Oh, Young Taeck ; Baek, Sumin ; Kang, Dongin ; Lee, Eunkyoung ; Jeong, Bumi</creatorcontrib><description>BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P &lt; 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED.</description><identifier>ISSN: 1011-8934</identifier><identifier>EISSN: 1598-6357</identifier><identifier>DOI: 10.3346/jkms.2023.38.e322</identifier><language>eng</language><publisher>대한의학회</publisher><subject>의학일반</subject><ispartof>Journal of Korean Medical Science, 2023, 38(45), , pp.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73</cites><orcidid>0000-0002-7747-3987 ; 0000-0002-2799-4071 ; 0009-0009-5917-8843 ; 0000-0001-5080-7097 ; 0000-0001-8106-3713 ; 0000-0003-1296-8425 ; 0000-0002-9055-6250 ; 0000-0003-0691-5909 ; 0009-0001-1806-9757 ; 0000-0001-7525-9189 ; 0000-0003-4455-9482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003015760$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Donghoon</creatorcontrib><creatorcontrib>Jeong, Joo</creatorcontrib><creatorcontrib>Kim, Joonghee</creatorcontrib><creatorcontrib>Cho, Youngjin</creatorcontrib><creatorcontrib>Park, Inwon</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Oh, Young Taeck</creatorcontrib><creatorcontrib>Baek, Sumin</creatorcontrib><creatorcontrib>Kang, Dongin</creatorcontrib><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Jeong, Bumi</creatorcontrib><title>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</title><title>Journal of Korean medical science</title><description>BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P &lt; 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED.</description><subject>의학일반</subject><issn>1011-8934</issn><issn>1598-6357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkU9LxDAUxIsoqKsfwFuOIrQmedt_3uq66oKg6HoOafq6xm3TmlShXvzqpq6nGYYfA-9NEJwxGgHMk8v3besiTjlEkEUInO8FRyzOszCBON33njIWZjnMD4Nj594p5XHM4Sj4uR97tFvZYKslucEB1aA7Q7QhyxbtBo0afdxLO7RoBkdenTYbsjJ60LIhy8WduyIFeWk90L91BkmxmlJSGNmM32jJl4vIdSdtFS7QDrrWWJGnt9FppaVxJ8FBLRuHp_86C15vl-vFffjweLdaFA-hApoNYU7TUtaKlsybBDNgwCtWybwGmkCWMCaBqthDZU5Lf7KsYV5Wqs5zFvMqhVlwses1thZbpUUn9Z9uOrG1onherwSjwBOecg-f7-Dedh-f6AbRaqewaaTB7tMJnuWcpzROmUfZDlW2c85iLXqr_TNG3yamZcS0jJiWEZCJaRn4BWcPggU</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Kim, Donghoon</creator><creator>Jeong, Joo</creator><creator>Kim, Joonghee</creator><creator>Cho, Youngjin</creator><creator>Park, Inwon</creator><creator>Lee, Sang-Min</creator><creator>Oh, Young Taeck</creator><creator>Baek, Sumin</creator><creator>Kang, Dongin</creator><creator>Lee, Eunkyoung</creator><creator>Jeong, Bumi</creator><general>대한의학회</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-7747-3987</orcidid><orcidid>https://orcid.org/0000-0002-2799-4071</orcidid><orcidid>https://orcid.org/0009-0009-5917-8843</orcidid><orcidid>https://orcid.org/0000-0001-5080-7097</orcidid><orcidid>https://orcid.org/0000-0001-8106-3713</orcidid><orcidid>https://orcid.org/0000-0003-1296-8425</orcidid><orcidid>https://orcid.org/0000-0002-9055-6250</orcidid><orcidid>https://orcid.org/0000-0003-0691-5909</orcidid><orcidid>https://orcid.org/0009-0001-1806-9757</orcidid><orcidid>https://orcid.org/0000-0001-7525-9189</orcidid><orcidid>https://orcid.org/0000-0003-4455-9482</orcidid></search><sort><creationdate>20231120</creationdate><title>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</title><author>Kim, Donghoon ; Jeong, Joo ; Kim, Joonghee ; Cho, Youngjin ; Park, Inwon ; Lee, Sang-Min ; Oh, Young Taeck ; Baek, Sumin ; Kang, Dongin ; Lee, Eunkyoung ; Jeong, Bumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>의학일반</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghoon</creatorcontrib><creatorcontrib>Jeong, Joo</creatorcontrib><creatorcontrib>Kim, Joonghee</creatorcontrib><creatorcontrib>Cho, Youngjin</creatorcontrib><creatorcontrib>Park, Inwon</creatorcontrib><creatorcontrib>Lee, Sang-Min</creatorcontrib><creatorcontrib>Oh, Young Taeck</creatorcontrib><creatorcontrib>Baek, Sumin</creatorcontrib><creatorcontrib>Kang, Dongin</creatorcontrib><creatorcontrib>Lee, Eunkyoung</creatorcontrib><creatorcontrib>Jeong, Bumi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Korean Citation Index</collection><jtitle>Journal of Korean medical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghoon</au><au>Jeong, Joo</au><au>Kim, Joonghee</au><au>Cho, Youngjin</au><au>Park, Inwon</au><au>Lee, Sang-Min</au><au>Oh, Young Taeck</au><au>Baek, Sumin</au><au>Kang, Dongin</au><au>Lee, Eunkyoung</au><au>Jeong, Bumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians</atitle><jtitle>Journal of Korean medical science</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>38</volume><issue>45</issue><spage>e322</spage><epage>e322</epage><pages>e322-e322</pages><issn>1011-8934</issn><eissn>1598-6357</eissn><abstract>BACKGROUNDHyperkalemia is a potentially fatal condition that mandates rapid identification in emergency departments (EDs). Although a 12-lead electrocardiogram (ECG) can indicate hyperkalemia, subtle changes in the ECG often pose detection challenges. An artificial intelligence application that accurately assesses hyperkalemia risk from ECGs could revolutionize patient screening and treatment. We aimed to evaluate the efficacy and reliability of a smartphone application, which utilizes camera-captured ECG images, in quantifying hyperkalemia risk compared to human experts.METHODSWe performed a retrospective analysis of ED hyperkalemic patients (serum potassium ≥ 6 mmol/L) and their age- and sex-matched non-hyperkalemic controls. The application was tested by five users and its performance was compared to five board-certified emergency physicians (EPs).RESULTSOur study included 125 patients. The area under the curve (AUC)-receiver operating characteristic of the application's output was nearly identical among the users, ranging from 0.898 to 0.904 (median: 0.902), indicating almost perfect interrater agreement (Fleiss' kappa 0.948). The application demonstrated high sensitivity (0.797), specificity (0.934), negative predictive value (NPV) (0.815), and positive predictive value (PPV) (0.927). In contrast, the EPs showed moderate interrater agreement (Fleiss' kappa 0.551), and their consensus score had a significantly lower AUC of 0.662. The physicians' consensus demonstrated a sensitivity of 0.203, specificity of 0.934, NPV of 0.527, and PPV of 0.765. Notably, this performance difference remained significant regardless of patients' sex and age (P &lt; 0.001 for both).CONCLUSIONOur findings suggest that a smartphone application can accurately and reliably quantify hyperkalemia risk using initial ECGs in the ED.</abstract><pub>대한의학회</pub><doi>10.3346/jkms.2023.38.e322</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7747-3987</orcidid><orcidid>https://orcid.org/0000-0002-2799-4071</orcidid><orcidid>https://orcid.org/0009-0009-5917-8843</orcidid><orcidid>https://orcid.org/0000-0001-5080-7097</orcidid><orcidid>https://orcid.org/0000-0001-8106-3713</orcidid><orcidid>https://orcid.org/0000-0003-1296-8425</orcidid><orcidid>https://orcid.org/0000-0002-9055-6250</orcidid><orcidid>https://orcid.org/0000-0003-0691-5909</orcidid><orcidid>https://orcid.org/0009-0001-1806-9757</orcidid><orcidid>https://orcid.org/0000-0001-7525-9189</orcidid><orcidid>https://orcid.org/0000-0003-4455-9482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1011-8934
ispartof Journal of Korean Medical Science, 2023, 38(45), , pp.1-9
issn 1011-8934
1598-6357
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10326272
source PubMed Central
subjects 의학일반
title Hyperkalemia Detection in Emergency Departments Using Initial ECGs: A Smartphone AI ECG Analyzer vs. Board-Certified Physicians
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperkalemia%20Detection%20in%20Emergency%20Departments%20Using%20Initial%20ECGs:%20A%20Smartphone%20AI%20ECG%20Analyzer%20vs.%20Board-Certified%20Physicians&rft.jtitle=Journal%20of%20Korean%20medical%20science&rft.au=Kim,%20Donghoon&rft.date=2023-11-20&rft.volume=38&rft.issue=45&rft.spage=e322&rft.epage=e322&rft.pages=e322-e322&rft.issn=1011-8934&rft.eissn=1598-6357&rft_id=info:doi/10.3346/jkms.2023.38.e322&rft_dat=%3Cproquest_nrf_k%3E2892270571%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-907bafc0b107b6e83132d1da9f30638611a30c57bab90b357af34bdcf99152d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892270571&rft_id=info:pmid/&rfr_iscdi=true