Loading…
Aqueous extract of Laurus nobilis leaf accelerates the alcohol metabolism and prevents liver damage in single-ethanol binge rats
BACKGROUND/OBJECTIVESExcessive alcohol consumption has harmful health effects, including alcohol hangovers and alcohol-related liver disease. Therefore, methods to accelerate the alcohol metabolism are needed. Laurus nobilis is a spice, flavoring agent, and traditional herbal medicine against variou...
Saved in:
Published in: | Nutrition research and practice 2023, 17(6), , pp.1113-1127 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND/OBJECTIVESExcessive alcohol consumption has harmful health effects, including alcohol hangovers and alcohol-related liver disease. Therefore, methods to accelerate the alcohol metabolism are needed. Laurus nobilis is a spice, flavoring agent, and traditional herbal medicine against various diseases. This study examined whether the standardized aqueous extract of L. nobilis leaves (LN) accelerates the alcohol metabolism and protects against liver damage in single-ethanol binge Sprague-Dawley (SD) rats.MATERIALS/METHODSLN was administered orally to SD rats 1 h before ethanol administration (3 g/kg body weight [BW]) at 100 and 300 mg/kg BW. Blood samples were collected 0.5, 1, 2, and 4 h after ethanol administration. The livers were excised 1 h after ethanol administration to determine the hepatic enzyme activity. The alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in the liver tissue were measured.RESULTSLN decreased the serum ethanol and acetaldehyde levels in ethanol-administered rats. LN increased the hepatic ADH and ALDH activities but decreased the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase activities in the ethanol-administered rats. In addition, LN inhibited lipid peroxidation and increased the activities of SOD and GPx.CONCLUSIONSLN modulates the mediators of various etiological effects of excessive alcohol consumption and enhances the alcohol metabolism and antioxidant activity, making it a potential candidate for hangover treatments. |
---|---|
ISSN: | 1976-1457 2005-6168 |
DOI: | 10.4162/nrp.2023.17.6.1113 |