Loading…

Seismic Response of Resilient Steel Frame with Self-Centering SMA Brace

An innovative self-centering shape memory alloy (SMA) brace aiming at improving the seismic performance and self-centering capacity of steel frame structures is proposed in this paper. A series of cyclic loading tests with six self-centering SMA brace (SC-SMAB) specimens was carried out to investiga...

Full description

Saved in:
Bibliographic Details
Published in:International journal of steel structures 2023, 23(6), , pp.1587-1601
Main Authors: Hu, Shujun, Chang, Liqing, Zhang, Bo, Zeng, Sizhi, Tang, Fenghua, Zhi, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An innovative self-centering shape memory alloy (SMA) brace aiming at improving the seismic performance and self-centering capacity of steel frame structures is proposed in this paper. A series of cyclic loading tests with six self-centering SMA brace (SC-SMAB) specimens was carried out to investigate the effects of SMA area, bolt torque and initial SMA force on the hysteresis curves, energy dissipation and self-centering capacity. In addition, based on the experimental results, a numerical model of SC-SMAB with the improved Graesser and Bouc–Wen model was established and validated. Three different single-bay plan configurations of 9 storey steel frames including bare steel frame (BSF), steel frame with slip braces (SF-SB) and steel frame with SC-SMABs (SF-SCB) were analyzed to evaluate the seismic response. The test results show that the SC-SMAB with the bolt torque of 10 N M and initial SMA force of 5 kN has the maximum bearing force and self-centering capacity ratio. The established numerical model can accurately predict the seismic performance of the SC-SMAB. The inter-story drift ratio, roof displacement and roof acceleration of SF-SCB are lower than those of the BSF and SF-SB evidently, which decrease by 62.21%, 29.46% and 28.36% respectively from BSF. The hysteresis curve of SC-SMAB in the steel frame has nearly ideal flag-shape with high bearing force, good energy dissipation capacity, small residual deformation and outstanding re-centering capacity.
ISSN:1598-2351
2093-6311
DOI:10.1007/s13296-023-00789-1