Loading…

Heat recovery optimization of a shell and tube bundle heat exchanger with continuous helical baffles for air ventilation systems

We report a numerical evaluation of the impact of continuous helical baffle on the heat recovery efficiency of counterflow tube bundle heat exchangers. The baffle inclination angle has been varied from 11∘ to 22∘. Since the fluid flows over the tube bundle at an angle due to helical flow inside the...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Air-Conditioning and Refrigeration 2024, 32(1), , pp.1-16
Main Authors: Bari, Md Ashfaqul, Münsch, Manuel, Schöneberger, Bastian, Schlagbauer, Bernhard, Tiu, Andrea Alina, Wierschem, Andreas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 16
container_issue 1
container_start_page 2
container_title International Journal of Air-Conditioning and Refrigeration
container_volume 32
creator Bari, Md Ashfaqul
Münsch, Manuel
Schöneberger, Bastian
Schlagbauer, Bernhard
Tiu, Andrea Alina
Wierschem, Andreas
description We report a numerical evaluation of the impact of continuous helical baffle on the heat recovery efficiency of counterflow tube bundle heat exchangers. The baffle inclination angle has been varied from 11∘ to 22∘. Since the fluid flows over the tube bundle at an angle due to helical flow inside the shell, the heat exchanger operates in cross counter mode. Fluent simulations with the k-ω transition shear stress transport turbulence model have been performed to investigate the thermal-hydraulic parameters of the system in terms of heat recovery efficiency, pressure loss, and overall heat transfer rate. Outside air temperature has been varied to mimic cold and warm weather. Pressure loss has been constrained to be less than 250 Pa, conforming to EU guidelines for energy labeling of residential ventilation units. At the maximum volume flow rate of 40 m3/h, the device performed with over 80% heat recovery efficiency for the considered temperature difference. Continuous helical baffles helped to improve convective heat transfer by reducing cross flow area and increasing velocity. Smaller angles result in greater pressure loss while having no discernible effect on heat recovery efficiency for the considered geometry. The analysis demonstrates the potential of a compact counterflowing recuperative heat exchanger with continuous helical baffles for decentralized ventilation systems and serves as a basis for further optimization.
doi_str_mv 10.1007/s44189-023-00046-4
format article
fullrecord <record><control><sourceid>proquest_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10356413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ab201f3f62cd4ef3b39ec57f3a44beeb</doaj_id><sourcerecordid>2912143628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c04ef72af7913035d79fb60cb22bc687925ef4bb0a8d3a9ed810d80fffb738df3</originalsourceid><addsrcrecordid>eNo9kMtqWzEQhkVpoMHNC3Ql6K5wGt3ObRlC2xgChZKuxUga2XKOj1xJJ62zyqNHtUtXc_vnY-Yn5ANnnzlj_XVWig9jw4RsGGOqa9QbcikYZw2XUr79n4v2HbnKeVdFteh6zi_Jyx1CoQltfMJ0pPFQwj48QwlxptFToHmL00RhdrQsBqlZZjch3f7dwj92C_MGE_0dypbaOJcwL3HJdTwFCxM14P2EmfqYKIREn7BKpjM9H3PBfX5PLjxMGa_-xRX5-fXLw-1dc__92_r25r6xirelsUyh7wX4fuSSydb1ozcds0YIY7uhH0WLXhnDYHASRnQDZ25g3nvTy8F5uSKfztw5ef1og44QTnET9WPSNz8e1ppXcKeqaSuyPotdhJ0-pLCHdDxtnBoxbTSkEuyEGkx110vfCevqidLIEW3bewlKGURTWR_PrEOKvxbMRe_ikub6qxYjF1zJTgzyFZPojPo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912143628</pqid></control><display><type>article</type><title>Heat recovery optimization of a shell and tube bundle heat exchanger with continuous helical baffles for air ventilation systems</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><source>EZB Electronic Journals Library</source><creator>Bari, Md Ashfaqul ; Münsch, Manuel ; Schöneberger, Bastian ; Schlagbauer, Bernhard ; Tiu, Andrea Alina ; Wierschem, Andreas</creator><creatorcontrib>Bari, Md Ashfaqul ; Münsch, Manuel ; Schöneberger, Bastian ; Schlagbauer, Bernhard ; Tiu, Andrea Alina ; Wierschem, Andreas</creatorcontrib><description>We report a numerical evaluation of the impact of continuous helical baffle on the heat recovery efficiency of counterflow tube bundle heat exchangers. The baffle inclination angle has been varied from 11∘ to 22∘. Since the fluid flows over the tube bundle at an angle due to helical flow inside the shell, the heat exchanger operates in cross counter mode. Fluent simulations with the k-ω transition shear stress transport turbulence model have been performed to investigate the thermal-hydraulic parameters of the system in terms of heat recovery efficiency, pressure loss, and overall heat transfer rate. Outside air temperature has been varied to mimic cold and warm weather. Pressure loss has been constrained to be less than 250 Pa, conforming to EU guidelines for energy labeling of residential ventilation units. At the maximum volume flow rate of 40 m3/h, the device performed with over 80% heat recovery efficiency for the considered temperature difference. Continuous helical baffles helped to improve convective heat transfer by reducing cross flow area and increasing velocity. Smaller angles result in greater pressure loss while having no discernible effect on heat recovery efficiency for the considered geometry. The analysis demonstrates the potential of a compact counterflowing recuperative heat exchanger with continuous helical baffles for decentralized ventilation systems and serves as a basis for further optimization.</description><identifier>ISSN: 2010-1325</identifier><identifier>EISSN: 2010-1333</identifier><identifier>DOI: 10.1007/s44189-023-00046-4</identifier><language>eng</language><publisher>Busan: Springer Nature B.V</publisher><subject>Air temperature ; Air to air heat exchanger ; Baffles ; Compact recuperative heat exchangers ; Composite materials ; Continuous helical baffle ; Convective heat transfer ; Counterflow ; Cross flow ; Cross-counter flow ; Decentralized ventilation ; Efficiency ; Energy conservation ; Energy consumption ; Energy efficiency ; Fluid flow ; Geometry ; Green buildings ; Heat conductivity ; Heat exchangers ; Heat recovery ; Heat recovery systems ; Heat transfer ; Helical flow ; Inclination angle ; k-\omega$$ k - ω transition SST ; Optimization ; Polymers ; Pressure loss ; Residential energy ; Shear stress ; Shell and tube ; Temperature gradients ; Turbulence models ; Ventilation ; 기계공학</subject><ispartof>International Journal of Air-Conditioning and Refrigeration, 2024, 32(1), , pp.1-16</ispartof><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912143628/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912143628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003041637$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Bari, Md Ashfaqul</creatorcontrib><creatorcontrib>Münsch, Manuel</creatorcontrib><creatorcontrib>Schöneberger, Bastian</creatorcontrib><creatorcontrib>Schlagbauer, Bernhard</creatorcontrib><creatorcontrib>Tiu, Andrea Alina</creatorcontrib><creatorcontrib>Wierschem, Andreas</creatorcontrib><title>Heat recovery optimization of a shell and tube bundle heat exchanger with continuous helical baffles for air ventilation systems</title><title>International Journal of Air-Conditioning and Refrigeration</title><description>We report a numerical evaluation of the impact of continuous helical baffle on the heat recovery efficiency of counterflow tube bundle heat exchangers. The baffle inclination angle has been varied from 11∘ to 22∘. Since the fluid flows over the tube bundle at an angle due to helical flow inside the shell, the heat exchanger operates in cross counter mode. Fluent simulations with the k-ω transition shear stress transport turbulence model have been performed to investigate the thermal-hydraulic parameters of the system in terms of heat recovery efficiency, pressure loss, and overall heat transfer rate. Outside air temperature has been varied to mimic cold and warm weather. Pressure loss has been constrained to be less than 250 Pa, conforming to EU guidelines for energy labeling of residential ventilation units. At the maximum volume flow rate of 40 m3/h, the device performed with over 80% heat recovery efficiency for the considered temperature difference. Continuous helical baffles helped to improve convective heat transfer by reducing cross flow area and increasing velocity. Smaller angles result in greater pressure loss while having no discernible effect on heat recovery efficiency for the considered geometry. The analysis demonstrates the potential of a compact counterflowing recuperative heat exchanger with continuous helical baffles for decentralized ventilation systems and serves as a basis for further optimization.</description><subject>Air temperature</subject><subject>Air to air heat exchanger</subject><subject>Baffles</subject><subject>Compact recuperative heat exchangers</subject><subject>Composite materials</subject><subject>Continuous helical baffle</subject><subject>Convective heat transfer</subject><subject>Counterflow</subject><subject>Cross flow</subject><subject>Cross-counter flow</subject><subject>Decentralized ventilation</subject><subject>Efficiency</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Green buildings</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Heat transfer</subject><subject>Helical flow</subject><subject>Inclination angle</subject><subject>k-\omega$$ k - ω transition SST</subject><subject>Optimization</subject><subject>Polymers</subject><subject>Pressure loss</subject><subject>Residential energy</subject><subject>Shear stress</subject><subject>Shell and tube</subject><subject>Temperature gradients</subject><subject>Turbulence models</subject><subject>Ventilation</subject><subject>기계공학</subject><issn>2010-1325</issn><issn>2010-1333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kMtqWzEQhkVpoMHNC3Ql6K5wGt3ObRlC2xgChZKuxUga2XKOj1xJJ62zyqNHtUtXc_vnY-Yn5ANnnzlj_XVWig9jw4RsGGOqa9QbcikYZw2XUr79n4v2HbnKeVdFteh6zi_Jyx1CoQltfMJ0pPFQwj48QwlxptFToHmL00RhdrQsBqlZZjch3f7dwj92C_MGE_0dypbaOJcwL3HJdTwFCxM14P2EmfqYKIREn7BKpjM9H3PBfX5PLjxMGa_-xRX5-fXLw-1dc__92_r25r6xirelsUyh7wX4fuSSydb1ozcds0YIY7uhH0WLXhnDYHASRnQDZ25g3nvTy8F5uSKfztw5ef1og44QTnET9WPSNz8e1ppXcKeqaSuyPotdhJ0-pLCHdDxtnBoxbTSkEuyEGkx110vfCevqidLIEW3bewlKGURTWR_PrEOKvxbMRe_ikub6qxYjF1zJTgzyFZPojPo</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Bari, Md Ashfaqul</creator><creator>Münsch, Manuel</creator><creator>Schöneberger, Bastian</creator><creator>Schlagbauer, Bernhard</creator><creator>Tiu, Andrea Alina</creator><creator>Wierschem, Andreas</creator><general>Springer Nature B.V</general><general>Springer</general><general>대한설비공학회</general><scope>7TC</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><scope>ACYCR</scope></search><sort><creationdate>20240110</creationdate><title>Heat recovery optimization of a shell and tube bundle heat exchanger with continuous helical baffles for air ventilation systems</title><author>Bari, Md Ashfaqul ; Münsch, Manuel ; Schöneberger, Bastian ; Schlagbauer, Bernhard ; Tiu, Andrea Alina ; Wierschem, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c04ef72af7913035d79fb60cb22bc687925ef4bb0a8d3a9ed810d80fffb738df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Air to air heat exchanger</topic><topic>Baffles</topic><topic>Compact recuperative heat exchangers</topic><topic>Composite materials</topic><topic>Continuous helical baffle</topic><topic>Convective heat transfer</topic><topic>Counterflow</topic><topic>Cross flow</topic><topic>Cross-counter flow</topic><topic>Decentralized ventilation</topic><topic>Efficiency</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Green buildings</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Heat transfer</topic><topic>Helical flow</topic><topic>Inclination angle</topic><topic>k-\omega$$ k - ω transition SST</topic><topic>Optimization</topic><topic>Polymers</topic><topic>Pressure loss</topic><topic>Residential energy</topic><topic>Shear stress</topic><topic>Shell and tube</topic><topic>Temperature gradients</topic><topic>Turbulence models</topic><topic>Ventilation</topic><topic>기계공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bari, Md Ashfaqul</creatorcontrib><creatorcontrib>Münsch, Manuel</creatorcontrib><creatorcontrib>Schöneberger, Bastian</creatorcontrib><creatorcontrib>Schlagbauer, Bernhard</creatorcontrib><creatorcontrib>Tiu, Andrea Alina</creatorcontrib><creatorcontrib>Wierschem, Andreas</creatorcontrib><collection>Mechanical Engineering Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>International Journal of Air-Conditioning and Refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bari, Md Ashfaqul</au><au>Münsch, Manuel</au><au>Schöneberger, Bastian</au><au>Schlagbauer, Bernhard</au><au>Tiu, Andrea Alina</au><au>Wierschem, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat recovery optimization of a shell and tube bundle heat exchanger with continuous helical baffles for air ventilation systems</atitle><jtitle>International Journal of Air-Conditioning and Refrigeration</jtitle><date>2024-01-10</date><risdate>2024</risdate><volume>32</volume><issue>1</issue><spage>2</spage><epage>16</epage><pages>2-16</pages><issn>2010-1325</issn><eissn>2010-1333</eissn><abstract>We report a numerical evaluation of the impact of continuous helical baffle on the heat recovery efficiency of counterflow tube bundle heat exchangers. The baffle inclination angle has been varied from 11∘ to 22∘. Since the fluid flows over the tube bundle at an angle due to helical flow inside the shell, the heat exchanger operates in cross counter mode. Fluent simulations with the k-ω transition shear stress transport turbulence model have been performed to investigate the thermal-hydraulic parameters of the system in terms of heat recovery efficiency, pressure loss, and overall heat transfer rate. Outside air temperature has been varied to mimic cold and warm weather. Pressure loss has been constrained to be less than 250 Pa, conforming to EU guidelines for energy labeling of residential ventilation units. At the maximum volume flow rate of 40 m3/h, the device performed with over 80% heat recovery efficiency for the considered temperature difference. Continuous helical baffles helped to improve convective heat transfer by reducing cross flow area and increasing velocity. Smaller angles result in greater pressure loss while having no discernible effect on heat recovery efficiency for the considered geometry. The analysis demonstrates the potential of a compact counterflowing recuperative heat exchanger with continuous helical baffles for decentralized ventilation systems and serves as a basis for further optimization.</abstract><cop>Busan</cop><pub>Springer Nature B.V</pub><doi>10.1007/s44189-023-00046-4</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2010-1325
ispartof International Journal of Air-Conditioning and Refrigeration, 2024, 32(1), , pp.1-16
issn 2010-1325
2010-1333
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10356413
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest); EZB Electronic Journals Library
subjects Air temperature
Air to air heat exchanger
Baffles
Compact recuperative heat exchangers
Composite materials
Continuous helical baffle
Convective heat transfer
Counterflow
Cross flow
Cross-counter flow
Decentralized ventilation
Efficiency
Energy conservation
Energy consumption
Energy efficiency
Fluid flow
Geometry
Green buildings
Heat conductivity
Heat exchangers
Heat recovery
Heat recovery systems
Heat transfer
Helical flow
Inclination angle
k-\omega$$ k - ω transition SST
Optimization
Polymers
Pressure loss
Residential energy
Shear stress
Shell and tube
Temperature gradients
Turbulence models
Ventilation
기계공학
title Heat recovery optimization of a shell and tube bundle heat exchanger with continuous helical baffles for air ventilation systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20recovery%20optimization%20of%20a%20shell%20and%20tube%20bundle%20heat%20exchanger%20with%20continuous%20helical%20baffles%20for%20air%20ventilation%20systems&rft.jtitle=International%20Journal%20of%20Air-Conditioning%20and%20Refrigeration&rft.au=Bari,%20Md%20Ashfaqul&rft.date=2024-01-10&rft.volume=32&rft.issue=1&rft.spage=2&rft.epage=16&rft.pages=2-16&rft.issn=2010-1325&rft.eissn=2010-1333&rft_id=info:doi/10.1007/s44189-023-00046-4&rft_dat=%3Cproquest_nrf_k%3E2912143628%3C/proquest_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-c04ef72af7913035d79fb60cb22bc687925ef4bb0a8d3a9ed810d80fffb738df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912143628&rft_id=info:pmid/&rfr_iscdi=true