Loading…

Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study

To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, inter...

Full description

Saved in:
Bibliographic Details
Published in:Korean journal of orthodontics (2012) 2024, 54(1), , pp.48-58
Main Authors: Han, Sung-Hoon, Lim, Jisup, Kim, Jun-Sik, Cho, Jin-Hyoung, Hong, Mihee, Kim, Minji, Kim, Su-Jung, Kim, Yoon-Ji, Kim, Young Ho, Lim, Sung-Hoon, Sung, Sang Jin, Kang, Kyung-Hwa, Baek, Seung-Hak, Choi, Sung-Kwon, Kim, Namkug
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c347t-8f9517f11eaea111267693687e4dfc1f32284157c098434bcb1f287ce0505c403
container_end_page 58
container_issue 1
container_start_page 48
container_title Korean journal of orthodontics (2012)
container_volume 54
creator Han, Sung-Hoon
Lim, Jisup
Kim, Jun-Sik
Cho, Jin-Hyoung
Hong, Mihee
Kim, Minji
Kim, Su-Jung
Kim, Yoon-Ji
Kim, Young Ho
Lim, Sung-Hoon
Sung, Sang Jin
Kang, Kyung-Hwa
Baek, Seung-Hak
Choi, Sung-Kwon
Kim, Namkug
description To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.
doi_str_mv 10.4041/kjod23.075
format article
fullrecord <record><control><sourceid>nurimedia_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10369097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE11757160</nurid><sourcerecordid>NODE11757160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-8f9517f11eaea111267693687e4dfc1f32284157c098434bcb1f287ce0505c403</originalsourceid><addsrcrecordid>eNpFkdtqVDEUhjei2FJ74wNIbgQRds1xZ2_vhlq1UCxIBe9CJlmZpvuQMQdlXsZnNeOMNRf5V1gf_wrrb5qXBF9wzMm78SFYyi6wFE-aU4qxaJmk35_WmjLeSkH6k-Y8pQdcT1dflD1vTliPJeW8P21-r4wpUZsdCg5tQ8oQg17q7UNEBrb3egqbqGc06cXOOo4J1QLNoFOJMMOSE_K2infe6OzDgkryywZpZHQy2oJFJiw_w1T2TT2hBeq8veRfIY5IT5sQfb6f36MVmsuUvYH9fJRysbsXzTOnpwTnRz1rvn28urv83N7cfrq-XN20hnGZ294NgkhHCGjQhBDayW5gXS-BW2eIY5T2nAhp8NBzxtdmTRztpQEssDAcs7Pm7cF3iU6Nxqug_V_dBDVGtfp6d60IZt2AB1nhNwd4G8OPAimr2ScDU10RhJIUHTAdRC9w99_XxJBSBKe20dc17qqb2uenDvmpml-FXx19y3oG-4j-S6sCr4-_LLUF1utH5svthytCpJCkw-wPUamlhw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902958506</pqid></control><display><type>article</type><title>Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study</title><source>Open Access: PubMed Central</source><creator>Han, Sung-Hoon ; Lim, Jisup ; Kim, Jun-Sik ; Cho, Jin-Hyoung ; Hong, Mihee ; Kim, Minji ; Kim, Su-Jung ; Kim, Yoon-Ji ; Kim, Young Ho ; Lim, Sung-Hoon ; Sung, Sang Jin ; Kang, Kyung-Hwa ; Baek, Seung-Hak ; Choi, Sung-Kwon ; Kim, Namkug</creator><creatorcontrib>Han, Sung-Hoon ; Lim, Jisup ; Kim, Jun-Sik ; Cho, Jin-Hyoung ; Hong, Mihee ; Kim, Minji ; Kim, Su-Jung ; Kim, Yoon-Ji ; Kim, Young Ho ; Lim, Sung-Hoon ; Sung, Sang Jin ; Kang, Kyung-Hwa ; Baek, Seung-Hak ; Choi, Sung-Kwon ; Kim, Namkug</creatorcontrib><description>To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.</description><identifier>ISSN: 2234-7518</identifier><identifier>EISSN: 2005-372X</identifier><identifier>DOI: 10.4041/kjod23.075</identifier><identifier>PMID: 38072448</identifier><language>eng</language><publisher>Korea (South): 대한치과교정학회</publisher><subject>치의학</subject><ispartof>대한치과교정학회지, 2024, 54(1), , pp.48-58</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-8f9517f11eaea111267693687e4dfc1f32284157c098434bcb1f287ce0505c403</cites><orcidid>0000-0003-4528-8514 ; 0000-0002-3438-2217 ; 0000-0001-9044-7145 ; 0000-0001-8500-5246 ; 0000-0003-1672-1737 ; 0000-0001-6015-1482 ; 0000-0002-4284-1874 ; 0000-0002-7030-569X ; 0000-0002-4263-1084 ; 0000-0001-8938-233X ; 0000-0001-9593-564X ; 0000-0001-9546-9837 ; 0009-0005-5886-5810 ; 0000-0002-6586-9503 ; 0000-0002-0342-6379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38072448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003046355$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Sung-Hoon</creatorcontrib><creatorcontrib>Lim, Jisup</creatorcontrib><creatorcontrib>Kim, Jun-Sik</creatorcontrib><creatorcontrib>Cho, Jin-Hyoung</creatorcontrib><creatorcontrib>Hong, Mihee</creatorcontrib><creatorcontrib>Kim, Minji</creatorcontrib><creatorcontrib>Kim, Su-Jung</creatorcontrib><creatorcontrib>Kim, Yoon-Ji</creatorcontrib><creatorcontrib>Kim, Young Ho</creatorcontrib><creatorcontrib>Lim, Sung-Hoon</creatorcontrib><creatorcontrib>Sung, Sang Jin</creatorcontrib><creatorcontrib>Kang, Kyung-Hwa</creatorcontrib><creatorcontrib>Baek, Seung-Hak</creatorcontrib><creatorcontrib>Choi, Sung-Kwon</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><title>Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study</title><title>Korean journal of orthodontics (2012)</title><addtitle>Korean J Orthod</addtitle><description>To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.</description><subject>치의학</subject><issn>2234-7518</issn><issn>2005-372X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkdtqVDEUhjei2FJ74wNIbgQRds1xZ2_vhlq1UCxIBe9CJlmZpvuQMQdlXsZnNeOMNRf5V1gf_wrrb5qXBF9wzMm78SFYyi6wFE-aU4qxaJmk35_WmjLeSkH6k-Y8pQdcT1dflD1vTliPJeW8P21-r4wpUZsdCg5tQ8oQg17q7UNEBrb3egqbqGc06cXOOo4J1QLNoFOJMMOSE_K2infe6OzDgkryywZpZHQy2oJFJiw_w1T2TT2hBeq8veRfIY5IT5sQfb6f36MVmsuUvYH9fJRysbsXzTOnpwTnRz1rvn28urv83N7cfrq-XN20hnGZ294NgkhHCGjQhBDayW5gXS-BW2eIY5T2nAhp8NBzxtdmTRztpQEssDAcs7Pm7cF3iU6Nxqug_V_dBDVGtfp6d60IZt2AB1nhNwd4G8OPAimr2ScDU10RhJIUHTAdRC9w99_XxJBSBKe20dc17qqb2uenDvmpml-FXx19y3oG-4j-S6sCr4-_LLUF1utH5svthytCpJCkw-wPUamlhw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Han, Sung-Hoon</creator><creator>Lim, Jisup</creator><creator>Kim, Jun-Sik</creator><creator>Cho, Jin-Hyoung</creator><creator>Hong, Mihee</creator><creator>Kim, Minji</creator><creator>Kim, Su-Jung</creator><creator>Kim, Yoon-Ji</creator><creator>Kim, Young Ho</creator><creator>Lim, Sung-Hoon</creator><creator>Sung, Sang Jin</creator><creator>Kang, Kyung-Hwa</creator><creator>Baek, Seung-Hak</creator><creator>Choi, Sung-Kwon</creator><creator>Kim, Namkug</creator><general>대한치과교정학회</general><scope>DBRKI</scope><scope>TDB</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0003-4528-8514</orcidid><orcidid>https://orcid.org/0000-0002-3438-2217</orcidid><orcidid>https://orcid.org/0000-0001-9044-7145</orcidid><orcidid>https://orcid.org/0000-0001-8500-5246</orcidid><orcidid>https://orcid.org/0000-0003-1672-1737</orcidid><orcidid>https://orcid.org/0000-0001-6015-1482</orcidid><orcidid>https://orcid.org/0000-0002-4284-1874</orcidid><orcidid>https://orcid.org/0000-0002-7030-569X</orcidid><orcidid>https://orcid.org/0000-0002-4263-1084</orcidid><orcidid>https://orcid.org/0000-0001-8938-233X</orcidid><orcidid>https://orcid.org/0000-0001-9593-564X</orcidid><orcidid>https://orcid.org/0000-0001-9546-9837</orcidid><orcidid>https://orcid.org/0009-0005-5886-5810</orcidid><orcidid>https://orcid.org/0000-0002-6586-9503</orcidid><orcidid>https://orcid.org/0000-0002-0342-6379</orcidid></search><sort><creationdate>20240101</creationdate><title>Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study</title><author>Han, Sung-Hoon ; Lim, Jisup ; Kim, Jun-Sik ; Cho, Jin-Hyoung ; Hong, Mihee ; Kim, Minji ; Kim, Su-Jung ; Kim, Yoon-Ji ; Kim, Young Ho ; Lim, Sung-Hoon ; Sung, Sang Jin ; Kang, Kyung-Hwa ; Baek, Seung-Hak ; Choi, Sung-Kwon ; Kim, Namkug</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-8f9517f11eaea111267693687e4dfc1f32284157c098434bcb1f287ce0505c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>치의학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Sung-Hoon</creatorcontrib><creatorcontrib>Lim, Jisup</creatorcontrib><creatorcontrib>Kim, Jun-Sik</creatorcontrib><creatorcontrib>Cho, Jin-Hyoung</creatorcontrib><creatorcontrib>Hong, Mihee</creatorcontrib><creatorcontrib>Kim, Minji</creatorcontrib><creatorcontrib>Kim, Su-Jung</creatorcontrib><creatorcontrib>Kim, Yoon-Ji</creatorcontrib><creatorcontrib>Kim, Young Ho</creatorcontrib><creatorcontrib>Lim, Sung-Hoon</creatorcontrib><creatorcontrib>Sung, Sang Jin</creatorcontrib><creatorcontrib>Kang, Kyung-Hwa</creatorcontrib><creatorcontrib>Baek, Seung-Hak</creatorcontrib><creatorcontrib>Choi, Sung-Kwon</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>Korean Database (DBpia)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Korean Citation Index</collection><jtitle>Korean journal of orthodontics (2012)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Sung-Hoon</au><au>Lim, Jisup</au><au>Kim, Jun-Sik</au><au>Cho, Jin-Hyoung</au><au>Hong, Mihee</au><au>Kim, Minji</au><au>Kim, Su-Jung</au><au>Kim, Yoon-Ji</au><au>Kim, Young Ho</au><au>Lim, Sung-Hoon</au><au>Sung, Sang Jin</au><au>Kang, Kyung-Hwa</au><au>Baek, Seung-Hak</au><au>Choi, Sung-Kwon</au><au>Kim, Namkug</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study</atitle><jtitle>Korean journal of orthodontics (2012)</jtitle><addtitle>Korean J Orthod</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>54</volume><issue>1</issue><spage>48</spage><epage>58</epage><pages>48-58</pages><issn>2234-7518</issn><eissn>2005-372X</eissn><abstract>To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.</abstract><cop>Korea (South)</cop><pub>대한치과교정학회</pub><pmid>38072448</pmid><doi>10.4041/kjod23.075</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4528-8514</orcidid><orcidid>https://orcid.org/0000-0002-3438-2217</orcidid><orcidid>https://orcid.org/0000-0001-9044-7145</orcidid><orcidid>https://orcid.org/0000-0001-8500-5246</orcidid><orcidid>https://orcid.org/0000-0003-1672-1737</orcidid><orcidid>https://orcid.org/0000-0001-6015-1482</orcidid><orcidid>https://orcid.org/0000-0002-4284-1874</orcidid><orcidid>https://orcid.org/0000-0002-7030-569X</orcidid><orcidid>https://orcid.org/0000-0002-4263-1084</orcidid><orcidid>https://orcid.org/0000-0001-8938-233X</orcidid><orcidid>https://orcid.org/0000-0001-9593-564X</orcidid><orcidid>https://orcid.org/0000-0001-9546-9837</orcidid><orcidid>https://orcid.org/0009-0005-5886-5810</orcidid><orcidid>https://orcid.org/0000-0002-6586-9503</orcidid><orcidid>https://orcid.org/0000-0002-0342-6379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2234-7518
ispartof 대한치과교정학회지, 2024, 54(1), , pp.48-58
issn 2234-7518
2005-372X
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10369097
source Open Access: PubMed Central
subjects 치의학
title Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20posteroanterior%20cephalogram%20landmarks%20and%20measurements%20identification%20using%20a%20cascaded%20convolutional%20neural%20network%20algorithm:%20A%20multicenter%20study&rft.jtitle=Korean%20journal%20of%20orthodontics%20(2012)&rft.au=Han,%20Sung-Hoon&rft.date=2024-01-01&rft.volume=54&rft.issue=1&rft.spage=48&rft.epage=58&rft.pages=48-58&rft.issn=2234-7518&rft.eissn=2005-372X&rft_id=info:doi/10.4041/kjod23.075&rft_dat=%3Cnurimedia_nrf_k%3ENODE11757160%3C/nurimedia_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-8f9517f11eaea111267693687e4dfc1f32284157c098434bcb1f287ce0505c403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902958506&rft_id=info:pmid/38072448&rft_nurid=NODE11757160&rfr_iscdi=true