Loading…
Framework for evaluating code generation ability of large language models
Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, pass‐ratio@n, which captures the granul...
Saved in:
Published in: | ETRI journal 2024, 46(1), , pp.106-117 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823 |
---|---|
cites | cdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 106 |
container_title | ETRI journal |
container_volume | 46 |
creator | Yeo, Sangyeop Ma, Yu‐Seung Kim, Sang Cheol Jun, Hyungkook Kim, Taeho |
description | Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric,
pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the
pass‐ratio@n metric. |
doi_str_mv | 10.4218/etrij.2023-0357 |
format | article |
fullrecord | <record><control><sourceid>wiley_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10402618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0149d44d4b2944788e506b1366390abf</doaj_id><sourcerecordid>ETR212649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</originalsourceid><addsrcrecordid>eNqFUU1LAzEQDaJg_Th73bOwmkw-NjmK-FEQBKnnMJtNlrTbjWSr0n9v2opXL_NmhvceMzxCrhi9EcD0rd_kuLwBCrymXDZHZAbAed1wUMdkxgBkrYTip-RsmpaUAhVSz8j8MePaf6e8qkLKlf_C4RM3cewrlzpf9X70ucxprLCNQ9xsqxSqAXPvSx37TyzNujCH6YKcBBwmf_mL5-T98WFx_1y_vD7N7-9eaic4NXUHtMOGqoCdNtohalfOQuk6b0RQTsvgwDnWGjBSqiZIDY1pQvnFOa-Bn5Prg--Yg125aBPGPfbJrrK9e1vMLaOCgmK6kOcHcpdwaT9yXGPe7hX7Rcq9xbyJbvCWMmE6ITrRghGi0dpLqlrGleKGYhuK1-3By-U0TdmHPz9G7S4Cu4_A7iKwuwiKQh0U33Hw2__o9mHxBgyUMPwH5faKbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Framework for evaluating code generation ability of large language models</title><source>Alma/SFX Local Collection</source><creator>Yeo, Sangyeop ; Ma, Yu‐Seung ; Kim, Sang Cheol ; Jun, Hyungkook ; Kim, Taeho</creator><creatorcontrib>Yeo, Sangyeop ; Ma, Yu‐Seung ; Kim, Sang Cheol ; Jun, Hyungkook ; Kim, Taeho</creatorcontrib><description>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric,
pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the
pass‐ratio@n metric.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.2023-0357</identifier><language>eng</language><publisher>Electronics and Telecommunications Research Institute (ETRI)</publisher><subject>code generation ; evaluation metric ; large language model ; natural language processing ; software engineering ; 전자/정보통신공학</subject><ispartof>ETRI Journal, 2024, 46(1), , pp.106-117</ispartof><rights>1225‐6463/$ © 2024 ETRI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</citedby><cites>FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</cites><orcidid>0000-0002-1925-2588 ; 0000-0002-4168-5515 ; 0000-0002-5061-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003054740$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeo, Sangyeop</creatorcontrib><creatorcontrib>Ma, Yu‐Seung</creatorcontrib><creatorcontrib>Kim, Sang Cheol</creatorcontrib><creatorcontrib>Jun, Hyungkook</creatorcontrib><creatorcontrib>Kim, Taeho</creatorcontrib><title>Framework for evaluating code generation ability of large language models</title><title>ETRI journal</title><description>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric,
pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the
pass‐ratio@n metric.</description><subject>code generation</subject><subject>evaluation metric</subject><subject>large language model</subject><subject>natural language processing</subject><subject>software engineering</subject><subject>전자/정보통신공학</subject><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUU1LAzEQDaJg_Th73bOwmkw-NjmK-FEQBKnnMJtNlrTbjWSr0n9v2opXL_NmhvceMzxCrhi9EcD0rd_kuLwBCrymXDZHZAbAed1wUMdkxgBkrYTip-RsmpaUAhVSz8j8MePaf6e8qkLKlf_C4RM3cewrlzpf9X70ucxprLCNQ9xsqxSqAXPvSx37TyzNujCH6YKcBBwmf_mL5-T98WFx_1y_vD7N7-9eaic4NXUHtMOGqoCdNtohalfOQuk6b0RQTsvgwDnWGjBSqiZIDY1pQvnFOa-Bn5Prg--Yg125aBPGPfbJrrK9e1vMLaOCgmK6kOcHcpdwaT9yXGPe7hX7Rcq9xbyJbvCWMmE6ITrRghGi0dpLqlrGleKGYhuK1-3By-U0TdmHPz9G7S4Cu4_A7iKwuwiKQh0U33Hw2__o9mHxBgyUMPwH5faKbg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Yeo, Sangyeop</creator><creator>Ma, Yu‐Seung</creator><creator>Kim, Sang Cheol</creator><creator>Jun, Hyungkook</creator><creator>Kim, Taeho</creator><general>Electronics and Telecommunications Research Institute (ETRI)</general><general>한국전자통신연구원</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-1925-2588</orcidid><orcidid>https://orcid.org/0000-0002-4168-5515</orcidid><orcidid>https://orcid.org/0000-0002-5061-206X</orcidid></search><sort><creationdate>202402</creationdate><title>Framework for evaluating code generation ability of large language models</title><author>Yeo, Sangyeop ; Ma, Yu‐Seung ; Kim, Sang Cheol ; Jun, Hyungkook ; Kim, Taeho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>code generation</topic><topic>evaluation metric</topic><topic>large language model</topic><topic>natural language processing</topic><topic>software engineering</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeo, Sangyeop</creatorcontrib><creatorcontrib>Ma, Yu‐Seung</creatorcontrib><creatorcontrib>Kim, Sang Cheol</creatorcontrib><creatorcontrib>Jun, Hyungkook</creatorcontrib><creatorcontrib>Kim, Taeho</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeo, Sangyeop</au><au>Ma, Yu‐Seung</au><au>Kim, Sang Cheol</au><au>Jun, Hyungkook</au><au>Kim, Taeho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework for evaluating code generation ability of large language models</atitle><jtitle>ETRI journal</jtitle><date>2024-02</date><risdate>2024</risdate><volume>46</volume><issue>1</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric,
pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the
pass‐ratio@n metric.</abstract><pub>Electronics and Telecommunications Research Institute (ETRI)</pub><doi>10.4218/etrij.2023-0357</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1925-2588</orcidid><orcidid>https://orcid.org/0000-0002-4168-5515</orcidid><orcidid>https://orcid.org/0000-0002-5061-206X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-6463 |
ispartof | ETRI Journal, 2024, 46(1), , pp.106-117 |
issn | 1225-6463 2233-7326 |
language | eng |
recordid | cdi_nrf_kci_oai_kci_go_kr_ARTI_10402618 |
source | Alma/SFX Local Collection |
subjects | code generation evaluation metric large language model natural language processing software engineering 전자/정보통신공학 |
title | Framework for evaluating code generation ability of large language models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20for%20evaluating%20code%20generation%20ability%20of%20large%20language%20models&rft.jtitle=ETRI%20journal&rft.au=Yeo,%20Sangyeop&rft.date=2024-02&rft.volume=46&rft.issue=1&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.2023-0357&rft_dat=%3Cwiley_nrf_k%3EETR212649%3C/wiley_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |