Loading…

Framework for evaluating code generation ability of large language models

Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, pass‐ratio@n, which captures the granul...

Full description

Saved in:
Bibliographic Details
Published in:ETRI journal 2024, 46(1), , pp.106-117
Main Authors: Yeo, Sangyeop, Ma, Yu‐Seung, Kim, Sang Cheol, Jun, Hyungkook, Kim, Taeho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823
cites cdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823
container_end_page 117
container_issue 1
container_start_page 106
container_title ETRI journal
container_volume 46
creator Yeo, Sangyeop
Ma, Yu‐Seung
Kim, Sang Cheol
Jun, Hyungkook
Kim, Taeho
description Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the pass‐ratio@n metric.
doi_str_mv 10.4218/etrij.2023-0357
format article
fullrecord <record><control><sourceid>wiley_nrf_k</sourceid><recordid>TN_cdi_nrf_kci_oai_kci_go_kr_ARTI_10402618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0149d44d4b2944788e506b1366390abf</doaj_id><sourcerecordid>ETR212649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</originalsourceid><addsrcrecordid>eNqFUU1LAzEQDaJg_Th73bOwmkw-NjmK-FEQBKnnMJtNlrTbjWSr0n9v2opXL_NmhvceMzxCrhi9EcD0rd_kuLwBCrymXDZHZAbAed1wUMdkxgBkrYTip-RsmpaUAhVSz8j8MePaf6e8qkLKlf_C4RM3cewrlzpf9X70ucxprLCNQ9xsqxSqAXPvSx37TyzNujCH6YKcBBwmf_mL5-T98WFx_1y_vD7N7-9eaic4NXUHtMOGqoCdNtohalfOQuk6b0RQTsvgwDnWGjBSqiZIDY1pQvnFOa-Bn5Prg--Yg125aBPGPfbJrrK9e1vMLaOCgmK6kOcHcpdwaT9yXGPe7hX7Rcq9xbyJbvCWMmE6ITrRghGi0dpLqlrGleKGYhuK1-3By-U0TdmHPz9G7S4Cu4_A7iKwuwiKQh0U33Hw2__o9mHxBgyUMPwH5faKbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Framework for evaluating code generation ability of large language models</title><source>Alma/SFX Local Collection</source><creator>Yeo, Sangyeop ; Ma, Yu‐Seung ; Kim, Sang Cheol ; Jun, Hyungkook ; Kim, Taeho</creator><creatorcontrib>Yeo, Sangyeop ; Ma, Yu‐Seung ; Kim, Sang Cheol ; Jun, Hyungkook ; Kim, Taeho</creatorcontrib><description>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the pass‐ratio@n metric.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><identifier>DOI: 10.4218/etrij.2023-0357</identifier><language>eng</language><publisher>Electronics and Telecommunications Research Institute (ETRI)</publisher><subject>code generation ; evaluation metric ; large language model ; natural language processing ; software engineering ; 전자/정보통신공학</subject><ispartof>ETRI Journal, 2024, 46(1), , pp.106-117</ispartof><rights>1225‐6463/$ © 2024 ETRI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</citedby><cites>FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</cites><orcidid>0000-0002-1925-2588 ; 0000-0002-4168-5515 ; 0000-0002-5061-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003054740$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeo, Sangyeop</creatorcontrib><creatorcontrib>Ma, Yu‐Seung</creatorcontrib><creatorcontrib>Kim, Sang Cheol</creatorcontrib><creatorcontrib>Jun, Hyungkook</creatorcontrib><creatorcontrib>Kim, Taeho</creatorcontrib><title>Framework for evaluating code generation ability of large language models</title><title>ETRI journal</title><description>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the pass‐ratio@n metric.</description><subject>code generation</subject><subject>evaluation metric</subject><subject>large language model</subject><subject>natural language processing</subject><subject>software engineering</subject><subject>전자/정보통신공학</subject><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUU1LAzEQDaJg_Th73bOwmkw-NjmK-FEQBKnnMJtNlrTbjWSr0n9v2opXL_NmhvceMzxCrhi9EcD0rd_kuLwBCrymXDZHZAbAed1wUMdkxgBkrYTip-RsmpaUAhVSz8j8MePaf6e8qkLKlf_C4RM3cewrlzpf9X70ucxprLCNQ9xsqxSqAXPvSx37TyzNujCH6YKcBBwmf_mL5-T98WFx_1y_vD7N7-9eaic4NXUHtMOGqoCdNtohalfOQuk6b0RQTsvgwDnWGjBSqiZIDY1pQvnFOa-Bn5Prg--Yg125aBPGPfbJrrK9e1vMLaOCgmK6kOcHcpdwaT9yXGPe7hX7Rcq9xbyJbvCWMmE6ITrRghGi0dpLqlrGleKGYhuK1-3By-U0TdmHPz9G7S4Cu4_A7iKwuwiKQh0U33Hw2__o9mHxBgyUMPwH5faKbg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Yeo, Sangyeop</creator><creator>Ma, Yu‐Seung</creator><creator>Kim, Sang Cheol</creator><creator>Jun, Hyungkook</creator><creator>Kim, Taeho</creator><general>Electronics and Telecommunications Research Institute (ETRI)</general><general>한국전자통신연구원</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-1925-2588</orcidid><orcidid>https://orcid.org/0000-0002-4168-5515</orcidid><orcidid>https://orcid.org/0000-0002-5061-206X</orcidid></search><sort><creationdate>202402</creationdate><title>Framework for evaluating code generation ability of large language models</title><author>Yeo, Sangyeop ; Ma, Yu‐Seung ; Kim, Sang Cheol ; Jun, Hyungkook ; Kim, Taeho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>code generation</topic><topic>evaluation metric</topic><topic>large language model</topic><topic>natural language processing</topic><topic>software engineering</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeo, Sangyeop</creatorcontrib><creatorcontrib>Ma, Yu‐Seung</creatorcontrib><creatorcontrib>Kim, Sang Cheol</creatorcontrib><creatorcontrib>Jun, Hyungkook</creatorcontrib><creatorcontrib>Kim, Taeho</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>Korean Citation Index</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeo, Sangyeop</au><au>Ma, Yu‐Seung</au><au>Kim, Sang Cheol</au><au>Jun, Hyungkook</au><au>Kim, Taeho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework for evaluating code generation ability of large language models</atitle><jtitle>ETRI journal</jtitle><date>2024-02</date><risdate>2024</risdate><volume>46</volume><issue>1</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, pass‐ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the pass‐ratio@n metric.</abstract><pub>Electronics and Telecommunications Research Institute (ETRI)</pub><doi>10.4218/etrij.2023-0357</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1925-2588</orcidid><orcidid>https://orcid.org/0000-0002-4168-5515</orcidid><orcidid>https://orcid.org/0000-0002-5061-206X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-6463
ispartof ETRI Journal, 2024, 46(1), , pp.106-117
issn 1225-6463
2233-7326
language eng
recordid cdi_nrf_kci_oai_kci_go_kr_ARTI_10402618
source Alma/SFX Local Collection
subjects code generation
evaluation metric
large language model
natural language processing
software engineering
전자/정보통신공학
title Framework for evaluating code generation ability of large language models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_nrf_k&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20for%20evaluating%20code%20generation%20ability%20of%20large%20language%20models&rft.jtitle=ETRI%20journal&rft.au=Yeo,%20Sangyeop&rft.date=2024-02&rft.volume=46&rft.issue=1&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/10.4218/etrij.2023-0357&rft_dat=%3Cwiley_nrf_k%3EETR212649%3C/wiley_nrf_k%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4309-d20da706fad898caa8c646a5cde94f6c85fc2cc1b9295567f582797f233cce823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true