Loading…

The effect of in-situ cellulosic matrix on the photophysical properties of white emissive CQDs

Carbon quantum dots (CQDs), the newest member of carbonaceous nanomaterials, have drawn many considerations since the past two decades. A vast number of researchers made their efforts to demystify optical behavior of these materials despite being demanding. Nevertheless, their emission origin is sti...

Full description

Saved in:
Bibliographic Details
Published in:Carbon Letters 2024, 34(1), , pp.399-406
Main Authors: Montazeri, Fereshteh, Ghasedi, Arman, Mahdavi, Behnam, Koushki, Ehsan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon quantum dots (CQDs), the newest member of carbonaceous nanomaterials, have drawn many considerations since the past two decades. A vast number of researchers made their efforts to demystify optical behavior of these materials despite being demanding. Nevertheless, their emission origin is still a controversial issue and this area suffers from a lack of hypothesis to explain the radiative transitions of these materials. White emissive CQDs are more prized among the other ones since it has provided an affordable warm white light source for many applications. In this paper, white emissive CQDs samples were prepared through a one-step hydrothermal synthesis approach. By using the advantage of possessing cellulosic networks in the Aloe Vera gel an in-situ matrix was created to encase CQDs particles. During the formation of CQDs particles, they were entrapped and created RGB nanoemitters in the cellulosic units. The leakage of the emitted photons during the radiative transitions followed by inner-filter effect (IFE) and self-/re-absorption acted as white light emissive sources. To scrutinize the validity and possibility of the hypothesis given in this paper, a series of spectroscopic analyses, including transmission electron microscopy (TEM), surface-enhanced Raman scattering (SERS), Fourier Transform Infrared (FT-IR), ultraviolet–visible (UV–Vis), and photoluminescence (PL) were conducted.
ISSN:1976-4251
2233-4998
DOI:10.1007/s42823-023-00652-7